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As far as the laws of mathematics refer to  
reality, they are not certain; and as far as they  

are certain, they do not refer to reality. 
(Albert Einstein) 

 
 
 

The Guide is definitive. 
 Reality is frequently inaccurate. 

(Douglas Adams) 





Abstract 

The work presented in this Ph.D. thesis deals with the definition of new fuzzy 
models for Group Decision Making (GDM) aimed at improving two phases 
of the decision process: preferences expression and aggregation. In particular 
a new preferences model named Fuzzy Ranking has been defined to help 
decision makers express fuzzy statements on available alternatives in a simple 
and meaningful form, focusing on two alternatives at a time but, at the same 
time, without losing the global picture. This allows to reduce inconsistencies 
with respect to other existing models. 

Moreover a new preference aggregation model guided by social influence 
has been described. During a GDM process, in fact, decision makers interact 
and discuss each other exchanging opinions and information. Often, in these 
interactions, those with wider experience, knowledge and persuasive ability 
are capable of influencing the others fostering a change in their views. So, 
social influence plays a key role in the decision process but, differently from 
other aspects, very few attempts to formalize its contribution in preference 
aggregation and consensus reaching have been made till now. 

In order to validate the defined models, they have been instantiated in 
two application contexts: e-Learning and Recommender Systems. In the first 
context, they have been applied to the peer assessment problem in massive 
online courses. In such courses, the huge number of participants prevents 
their thorough evaluation by the teachers. A feasible approach to tackle this 
issue is peer assessment, in which students also play the role of assessor for 
assignments submitted by others. But students are unreliable graders so peer 
assessment often provides inaccurate results. By leveraging on defined GDM 
models, a new peer assessment model aimed at improving the estimations of 
student grades has been proposed.  
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With respect to Recommender Systems, the group recommendation issue 
has been tackled. Instead of generating recommendations fitting individual 
users, Group Recommender Systems provide recommendations targeted to 
groups of users taking into account the preferences of any (or the majority 
of) group members together. The majority of existing approaches for group 
recommendations are based on the aggregation of either the preferences or 
the recommendations generated for individual group members. Customizing 
the defined GDM models, a new model for group recommendations has been 
proposed that also takes into account the personality of group members, their 
interpersonal trust and social influence.  

The defined models have been experimented with synthetic data to show 
how they operate and demonstrate their properties. Once instantiated in the 
defined application contexts, they have been experimented with real data to 
measure their performance in comparison to other context-specific methods. 
The obtained results are encouraging and, in most cases, better than those 
achieved by competitor methods. 
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Introduction 

Everyone’s life is full of alternatives. In fact, from the early days of life to a 
venerable age, from morning awakening to nightly sleeping, a person needs 
to make decisions of some sort. So, decision making can be considered one of 
the most important and frequent human activities. It includes information 
gathering as well as data mining, modelling, and analysis. It requires formal 
calculus and subjective attitudes and may take different forms according to 
situations and circumstances.  

One of the most complex decision making structures arises when several 
persons are involved in the decision process. This is known as Group Decision 
Making (GDM). GDM has been widely studied since it has applications in 
many fields. Several models and tools have been proposed for supporting this 
process in each of its steps, from the expression of the decision makers’ 
opinions to their aggregation, from the selection of a feasible alternative to 
the achievement of the consensus on it. Among such approaches, those based 
on the Fuzzy Sets Theory, have shown to be the most effective to deal with 
the intrinsic uncertainty and imprecision of human judgments. 

Nevertheless, fuzzy GDM models are not free of defects. In particular, the 
way decision makers express their preferences is often complex and requires 
to specify the degree to which each alternative is preferable to each other. 
This may result difficult and time-consuming and is likely to introduce errors 
and inconsistencies impacting the whole decision process. Moreover, even if 
several methods exist to integrate preferences expressed by decision makers, 
few attempts have been done till now to also consider social elements affecting 
the decision process like personality, interpersonal trust and influence.  

To overcome these issues, in this Ph.D. thesis, new fuzzy models for GDM 
affecting both preferences expression and aggregation have been defined and 
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experimented within two application contexts: e-Learning and Recommender 
Systems. The thesis is organized in two parts: in part 1 (chapters 1-3), the 
proposed models are defined and experimented in-silico to demonstrate their 
properties; in part 2 (chapters 4-6), the defined models are instantiated in 
the selected contexts and experimented to measure their performance, also 
in comparison with other context-specific methods. 

In particular, chapter 1 introduces the main concepts related to decision 
making, GDM and Fuzzy Sets, that are pre-requisite for the definition of the 
original models and methods described subsequently. The application of fuzzy 
sets to GDM is discussed and the most diffused fuzzy models and methods 
to represent and aggregate decision makers’ preferences, rank the problem 
alternatives and identify the best solution are introduced. Fuzzy-based 
methods for the management of incomplete information are also described. 

In chapter 2, the original Fuzzy Ranking model for preference elicitation 
is defined and compared with related work. After having deepened the 
classical ordinal ranking model, the proposed model is described as a fuzzy 
extension of the ordinal one. Conversion algorithms from fuzzy rankings to 
fuzzy preference relations and backward are then defined as well as similarity 
measures evaluating the concordance between experts’ opinion. 

In chapter 3 a Social Influence-Guided GDM model, able to manage the 
effects of social influence in GDM, is defined. The model estimates the level 
of social influence basing on interpersonal trust with the assumption that, 
the more a decision maker trusts another, the more her opinion is influenced 
by him. After having introduced background concepts on social influence and 
related theories, the proposed model is outlined and described in each step. 
The advantages with respect to other existing models are then presented as 
well as the results of an in silico experiment. 

In chapter 4, the application of the defined models to peer assessment in 
standard and massive e-Learning contexts is discussed. The peer assessment 
problem is described and formalized, existing approaches, aimed at improving 
peer assessment reliability are outlined and performance measures capable of 
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establishing and comparing the goodness of different approaches are defined. 
Then, a new approach based on the instantiation on the defined GDM models 
is presented and compared with other existing methods. 

In chapter 5, the application of the defined GDM models to the group 
recommendation problem (in the domain of Recommender Systems) is shown. 
After having introduced the most diffused approaches to individual and 
group recommendation, an original influence-based approach, based on the 
defined models, is defined and compared with related work. When generating 
group recommendations, the proposed model is able to take into account not 
only individual preferences (like most competitor methods) but also social 
elements like the personality of group members, their influence and mutual 
relationships. 

In chapter 6, a set of experiments aimed at measuring the performance of 
the original peer assessment and group recommendation methods defined in 
chapters 4 and 5 are presented and compared with those obtained by other 
methods from the respective fields. Large-scale experiments with synthetic 
realistic data as well as small-scale experiments with real data have been 
performed. Results obtained, in both contexts, are encouraging and proposed 
methods, in most cases, outperform competitor methods. 

Eventually, conclusions and on-going work are summarized. 





 
PART 1 

 
Fuzzy Models for Group Decision 

Making 





Chapter 1 

Background on Group Decision 
Making 

This chapter presents the basic concepts of Decision Making (DM) and Group 
Decision Making (GDM), which are the basis for the definition of the original 
models and methods described later on. Then, essential notions on Fuzzy Sets 
are outlined and their application in a GDM process, as a way to deal with 
the inherent uncertainty and imprecision of human judgments, is discussed. 
To this end, the most diffused fuzzy models and methods able to represent 
and aggregate decision makers’ preferences, to rank problem alternatives and 
to identify the best solution are described. Eventually, existing fuzzy-based 
methods that support incomplete and incoherent information processing in 
GDM are introduced. 

1.1 Decision Making 
Decision Making (DM) is a problem-solving activity aimed at the selection 
of a belief or a course of action among several alternatives. The typical DM 
process consists in the evaluation of the existing alternatives and the choice 
of the most satisfactory one, taking into account all the factors and 
contradictory requirements and according to the preferences of the decision-
maker. It is therefore a process that can be more or less rational and based 
on explicit or implicit knowledge. 

Any person makes decisions each and every day, often in an automatic 
and subconscious way. Some of these decisions are relatively small, such as 
deciding what to wear or what to have for lunch. Others are big and can 
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have a major influence on the course of our life, such as deciding where to go 
to school or whether to have children. Some decisions take time while others 
must be made in a split-second. 

If we look at organizations, we see that any of them has its goals and 
achieves them through the use of resources such as people, material, money, 
and the performance of managerial functions such as planning, organizing, 
directing, and controlling. To carry out these functions, managers, at various 
levels, are engaged in a continuous DM process related to problems that can 
concern aspects of logistics management, customer relationship, marketing, 
production planning, etc. [1]. 

Making a correct decision is not always easy. In many cases, in fact, the 
identified alternatives are related to complex situations that may have several 
factors of uncertainty like [2]: 
• impossibility or inexpediency of obtaining sufficient amounts of reliable 

information; 
• lack of reliable predictions of the characteristics and behavior of complex 

systems that reflect their response to external and internal actions; 
• poorly defined goals and constraints in the project, planning, operation, 

and control tasks; 
• impossibility of formalizing a number of factors and criteria. 

In [1], the authors recognize that the DM process within organizations is 
even more complex today than in the past. This is explained by several 
factors like the availability of huge amount of information that fosters the 
generation of more and more alternatives; the amplified cost of making errors 
thanks to the complexity of operations, automation, and the chain reaction 
that an error can cause in many parts of the organization; the rapid changes 
in the environment that introduce uncertainty and require decisions to be 
made quickly. These reasons justify the requirement for increasing technical 
and methodological support to help DM. 

A typical DM process can be split in four phases as shown in Figure 1 
[3]. In the intelligence phase the reality is examined, the problem is identified, 
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its limiting factors are analyzed and the problem statement is defined. In the 
design phase, a simplified model that represents the fragment of reality under 
examination is constructed and validated, and potential alternative solutions 
are identified. In the choice phase the identified alternatives are analyzed and 
a solution to the problem is proposed and tested to determine its viability. 
In the implementation phase the proposed solution is adopted. At every step 
it is possible to return to an earlier phase to refine the intermediate outcomes 
basing on their validation. 

 
Figure 1. Steps of a DM Process 

According to several authors [1, 2, 3] DM problems can be classified based 
on their structure. In structured problems, involved entities and relationships 
are convincingly established so that they can be numerically estimated. Such 
problems can be described and analyzed through standard mathematical 
models and methods coming from the fields of operational research, business 
analytics, simulation, statistics, forecasting, mathematical optimization, etc. 
Such problems are also referred to be “quantitatively formulated”. 
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Conversely, in unstructured problems, only the description of the most 
important entities is available while quantitative relationships between them 
are not known. These problems are also known as “qualitatively expressed” 
and cannot be described and analyzed through standard models and methods. 
Typical unstructured organizational problems include planning new services, 
hiring an executive, initiate a research and development project, etc.. 

According to [2, 4], a feasible (and sometimes the only possible) way to 
address this class of problems is to rely on the formulation of subjective 
estimates carried out by decision-makers (thus based on their own ideas on 
the efficiency of possible alternatives and importance of diverse criteria) and 
on the definition of the corresponding preferences. The heterogeneous and 
qualitative parameters of the problem can be so combined into a unique 
model, which permits alternatives to be evaluated.  

The assumption is that experienced managers perceive, in a broad and 
well-informed manner, how many personal and subjective considerations they 
have to bring into the DM process. On the other hand, successes and failures 
of the majority of decisions can be judged by people on the basis of their 
subjective preferences.  

In the middle between structured and unstructured problems, there are 
semi-structured problems having both quantitative and qualitative elements. 
Solving them involves a combination of traditional analytical models with 
models based on subjective preferences. Unstructured and semi-structured 
DM problems are also called ill-structured. 

1.2 Group Decision Making  
Decisions can be made by individuals or groups. While individual decisions 
are often made at lower managerial levels and in small organizations, group 
decisions are usually made at high managerial levels and large organizations. 
The DM process in which there is more than one individual involved is named 
Group Decision Making (GDM). 
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GDM is particularly useful when decisions require multiple perspectives 
and different areas of expertise. The main advantages of GDM, if compared 
to standard GM, can be summarized as follows [5]: 
• more intellectual resources are gathered to support the decision including 

individual competencies, intuition, and knowledge; 
• the work related to acquiring and processing the amount of available 

information can be distributed among group members; 
• if the group exhibits divergent interests, the final decision tends to be 

more representative of the needs of the organization. 
GDM can be cooperative or non-cooperative. In cooperative GDM all the 

members, each with their own knowledge, ideas, experience and motivation, 
are supposed to work together to achieve a common decision for which they 
will share the responsibility. Conversely, in non-cooperative GDM (otherwise 
known as non-cooperative multi member DM), the group members play the 
role of antagonists over some interest for which they must negotiate.  

As in cooperative GDM the members share responsibility for the decision 
(and may also participate in its implementation), it is important to assure 
that each member is satisfied with it. For this reason, the ideal condition to 
terminate a GDM process is the achievement of a unanimous solution. In 
absence of unanimity, the most satisfactory alternative for the group should 
be selected. The most common approaches to find it are [1]: 
• the group decision is made by the group leader after having discussed 

with the other group members (authority rule); 
• the group decision is made by selecting the alternative that is preferred 

by the majority of members (majority rule); 
• the group decision is made by repeatedly eliminating the most unpopular 

alternative until just one is left (negative minority rule); 
• the group decision is constructed by combining ranking or scores provided 

by members, individually, for each alternative (ranking rule); 
• the group decision is constructed to minimize the group discordance so 

that no member is extremely dissatisfied (soft consensus rule) [6]. 
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As a matter of fact, the commitment to the implementation of a given 
solution strictly depends upon the level of consensus achieved by the group. 
According to this principle, a decision imposed by a dominant portion of the 
group has to be considered worse than a decision obtained achieving genuine 
consensus. The most common reasons for discordance among the group 
members can be summarized as follows [2]: 
• although the group members are supposed to share the primary goal (i.e. 

to find the solution which most benefits the organization), they can have 
hidden or just partially shared secondary goals (e.g. to meet the priorities 
and needs of their respective departments); 

• each member may have a distinct perception of the problem and intuition 
which may be hard to formalize and share to the group; 

• each member may have access to different profiles of information, certain 
members may also have privileged access to restricted information. 
These factors can be mitigated by promoting discussions and sharing all 

relevant information pertaining to the decision. However, even when this 
happens, there are other factors that can adversely affect the decision process 
like the need to obtain a solution rapidly or the pressure of concordant 
majorities on the other decision makers. Both factors are reflected in the 
group’s tendency to prematurely converge on sub-optimal solutions [7, 8]. 

Some authors [1, 2, 9] stress the importance of including a moderator to 
support the GDM process. The moderator defines the process rules, assigns 
the tasks of each member, selects the appropriate technology, develops the 
schedule to be accomplished, identifies controversial opinions, promotes the 
discussion on them and verifies the reached level of concordance [10]. As 
shown in [11], the participation of a moderator, which may be human or 
automated, very often results in better outcomes. 

Various types of uncertain factors are commonly met in GDM problems 
that may be related to the nature of the problem, the possible alternatives of 
the decision and the potential outcomes [12]. Uncertainty has often been 
associated to the gap between the information available and the information 
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that decision makers would like to have [13] and may derive from incomplete 
or overwhelming information as well as from poor understanding. According 
to [2], such factors should be taken into account when defining mathematical 
models supporting GDM processes in order to increase the credibility and the 
factual efficiency of the decisions.  

The first attempts made in this direction were based on probability theory 
[14, 15] but, in more recent works, some researchers criticized the validity of 
these approaches. In particular, in [16] it was pointed out that similar to the 
solution of problems on the basis of deterministic methods, when we assume 
exact knowledge of the information, which usually does not correspond to 
reality, the application of probabilistic methods also supposes exact knowledge 
of the distribution laws and their parameters, which does not always 
correspond to the real possibilities of obtaining the entire spectrum of the 
probabilistic description. 

Alternative and more recent approaches able to deal with uncertainty in 
GMD rely, instead, on the fuzzy set theory established by Zadeh in 1965 [17]. 
According to [2], the application of such theory in GDM opens an interesting 
avenue of giving up “excessive” precision, which is inherent in the traditional 
modeling approaches, while preserving reasonable rigor. Following these 
considerations, the novel approaches defined in this Ph.D. thesis are precisely 
based on the fuzzy set theory. In order to provide a suitable background for 
appreciating them, an introduction to the basic concepts of such theory is 
given in the next sub-section. 

1.3 Preliminaries on Fuzzy Sets 
Fuzzy sets were introduced in [17] as an extension of classical sets. While in 
a classical (crisp) sets, each element can either belong to or not belong to a 
set, fuzzy sets allow various degrees of membership of an element to a set, 
ranging from 0 (no membership) to 1 (full membership). More formally, if X 
is a collection of objects, a fuzzy set A defined in X is a set of ordered pairs: 
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 ! = {(#, $%(#)) | # ∈ (} (1) 

where $%(#), called membership function, maps X to the membership space [0,1]. According to this definition, a crisp set A of X can also be viewed as a 
fuzzy set in X with a membership function: 

 $%(#) = {1 if # ∈ !0 if # ∉ ! (2) 

The support of a fuzzy set A, denoted by supp(!), is defined as the crisp 
set supp(!) = {# ∈ ( | $%(#) > 0}. The height of a fuzzy set A, denoted by hgt(!) is defined as: 

 hgt(!) = sup+∈, $%(#). (3) 

If hgt(!) = 1 then A is said normal. A fuzzy set A is empty, denoted by ∅, if $%(#) = 0 for any # ∈ (. 
A fuzzy set A is called subset of a fuzzy set B, denoted by ! ⊂ /, if $%(#) ≤ $1(#) for any # ∈ (. If ! ⊂ / and / ⊂ ! then A and B are called 

equal, denoted by ! = /. The union of two fuzzy sets A and B, is the fuzzy 
set ! ∪ 3, whose membership function is: $%∪1(#) = max($%(#),$1(#)). 
The intersection of two fuzzy sets A and B, is the fuzzy set ! ∩ /, whose 
membership function is: $%∩1(#) = min($%(#), $1(#)). The complement of 
a fuzzy set A, is the fuzzy set denoted by !5, whose membership function is: $%6(#) = 1 − $%(#) [18]. Operations on fuzzy sets comply with reflexive, 
transitive, commutative, associative and distributive properties as well as 
with absorption, involution and De Morgan’s laws. Instead, complementarity 
and mutual exclusivity laws are no longer valid for fuzzy sets. 

Let A be a fuzzy set on a collection of objects X and 8 ∈ [0,1], the α-cut 
of A is the crisp set !: given by: 

 !: = {# ∈ ( | $%(#) ≥ 8}. (4) 



Background on Group Decision Making 23 

A fuzzy set A, which is defined on the set of real numbers ℝ, is called convex 
if all its α-cuts !: are convex sets for any 8 ∈ [0,1] i.e. if it is verified that $%(α# + (1 − α)=) ≥ min($%(#),$%(=)) for any 8 ∈ [0,1] and #, = ∈ ℝ. 

A fuzzy relation is a relation where various degrees of association strength 
between elements are allowed. Given two collections of objects X and Y, a 
fuzzy relation R from X to Y (or on ( × ? ) is defined as: 

 @ = {((#, =), $A(#,=)) | (#, =) ∈ ( × ? }.  (5) 

The relation R can be seen as a fuzzy subset of ( × ? . If ( = ?  then R is 
called fuzzy relation on X.  

Fuzzy relations in different spaces can be combined together. Let R be a 
fuzzy relation on the space ( × ?  and S a fuzzy relation on the space ? × B, 
the max-min composition of R and S, denoted by @ ∘ D, is defined as: 

 @ ∘ D = {((#, G),maxH (min($A(#, =),$J(=, G)))) ∣ # ∈ (, = ∈ ? , G ∈ B}  (6) 

A fuzzy relation R on X is called reflexive if $A(#, #) = 1 for any # ∈ (; 
it is called symmetric if $A(#, =) = $A(=, #) for any #, = ∈ (; it is called max-
min transitive if @ ∘ @ ⊂ @. A fuzzy relation that is reflexive and symmetric 
is called fuzzy proximity relation; a fuzzy relation that is reflexive, symmetric, 
and max-min transitive is called fuzzy similarity relation. 

A convex normal fuzzy set A on ℝ is called a fuzzy number if there is 
exactly one # ∈ ℝ so that $%(#) = 1 (# is called mean value of A) and $% is 
piecewise continuous. A sample fuzzy number A with membership function $% (#) = 11+(+−5)2 is shown in Figure 2.a. Following the extension principle 
defined in [19] it is possible to extend basic operations to fuzzy numbers. If 
A and B are fuzzy numbers and ∗: ℝ × ℝ → ℝ is a binary operation then the 
membership function of the fuzzy number ! ∗ / is given by: 

 $%∗1 (G) = supT=+∗H min($%(#), $1(=))  for any #, = ∈ ℝ (7) 
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A fuzzy number A is of LR-type if there exist functions L (left) and R 
(right), and scalars 8 > 0 and U > 0 so that the membership function of A 
can be expressed as: 

 $% (#) = ⎩{⎨{
⎧Z (\ − #8 ) for # ≤ \@ (# − \U ) for # ≥ \ (8) 

where m is the mean value of A while 8 and U are called the left and right 
spreads, respectively. A LR fuzzy number A can be symbolically denoted as (\, 8, U)`A. If the mean value is not a real number but an interval [\, \] 
then A is called LR fuzzy interval and is denoted as(\, \, 8, U)`A. Figure 
2.b shows the membership function of the LR fuzzy number (4,2,3)`A with Z(#) = a−+2 and @(#) = a−2+. 

 
Figure 2. The membership function of sample fuzzy numbers 

Operations with LR fuzzy numbers can be simplified with respect to the 
application of equation (7). Let ! = (\, 8, U)`A and / = (c, d, e)`A be LR 
fuzzy numbers then: ! + / = (\ + c, 8 + d, U + e)`A; −! = (−\, U, 8)`A; 
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Background on Group Decision Making 25 ! − / = (\ − c,8 + e, U + d)`A. Approximate expressions for other kind of 
operations are also shown in [18]. 

A LR fuzzy number (\, 8, U)`A with Z(#) = @(#) = max(0, 1 − #) is 
named triangular fuzzy number and can be alternatively denoted with the 
triplet (\ − 8, \, \ + U). Figure 2.c shows the membership function of the 
sample triangular fuzzy number (2,4,8). A LR fuzzy interval (\, \, 8, U)`A 
with Z(#) = @(#) = max(0, 1 − #) is named trapezoidal fuzzy number and 
can be denoted with (\ − 8, \, \, \ + U). Figure 2.d shows the membership 
function of the sample trapezoidal fuzzy number (1,4,7,8). 

Fuzzy sets are useful to describe and assess information when it is difficult 
or impossible to do that precisely in a quantitative manner. These situations 
often involve attempting to qualify an event or an object by our human 
perception, and therefore often they lead to use words in natural languages 
instead of numerical values. To deal with these situations, linguistic variables 
are often used. Such variables can assume values that are not numbers but 
words or sentences in a natural or artificial language and rules are provided 
to map such variables on fuzzy sets. 

A linguistic variable L is characterized by a quintuple (#, f , 3 , g, h) 
where x is the name of the variable, T is the set of possible linguistic values 
of x, U is a collection of objects representing the universe of discourse, G is a 
syntactic rule for generating elements of T (usually a grammar) and M is a 
semantic rule for associating the meaning h(i), which is a fuzzy subset of U, 
to each term i ∈ f . 

1.4 Fuzzy Preferences Modeling in GDM 
A GDM problem is characterized by a group of decision makers (also called 
experts hereinafter) j = {a1,… , ak}, each with her own knowledge, ideas, 
experience and motivation, that express their preferences on a finite set of 
alternatives ( = {#1,… , #l} to achieve a common solution. Several ways to 
express and model experts’ preferences on available alternatives have been 
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proposed so far by different researchers [2, 20]. We analyze below the main 
features of the most popular ones. 

The ordering of alternatives from best to worst, also known as ordinal 
ranking, is one of the simplest preference expression models, useful when 
decision makers have difficulties in assessing quantitatively the strength of 
their preferences. In this case, according to [21], the possibilities of deriving 
recommendations based on incorrect information are reduced. The ordinal 
ranking provided by an expert am ∈ j can be represented as an ordering array nm = (om(#1),… , om(#l)) being a permutation function which returns the 
position of any alternative #p ∈ ( [22]. 

By using utility values, an expert am ∈ j can expresses her preferences 
through the definition of an utility function 3m: ( → [0,1] that associates a 
crisp value to each alternative [2]. Utility functions are supposed to preserve 
the preference ordering of the alternatives in a way that if 3m(#p) > 3m(#r) 
then #p is preferred to #r while, if 3m(#p) = 3m(#r), then #p is indifferent to #r for #p, #r ∈ (. Utility values allow experts to give precise estimates of 
their preferences but may introduce errors due to experts evaluating the same 
alternatives at different scales. To mitigate this issue, rating techniques have 
been defined based on anchors points and intervals [23]. 

With fuzzy estimates, each expert am ∈ j associates a fuzzy number tm(#p) 
to each alternative #p ∈ (. Such fuzzy number can be specified or indirectly 
expressed by means of a linguistic term [24]. Figure 3 shows an example of 
linguistic terms that may be used in a GDM process and the membership 
function of the corresponding fuzzy numbers. The use of linguistic terms 
makes the preference elicitation process more intuitive but its effectiveness 
can be hindered by differences in the interpretation of the linguistic terms. 
Techniques for equalizing fuzzy sets have been defined for reducing this type 
of elicitation error [2]. 

By using preference relations, each expert is asked to express the relative 
preference of each alternative with respect to any other through the definition 
of a positive reciprocal c × c matrix M where each element \pr is a preference 
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intensity ratio and can be interpreted as “#p is \pr times as good as #r” with #p, #r ∈ (. Under the condition of multiplicative reciprocity, once an expert 
provides a value for \pr, \rp is automatically obtained as \rp = 1/\pr [25]. 
A consistent preference relation also satisfies the multiplicative transitivity 
property i.e. \pm = \pr ⋅ \rm for each v, w, x ∈ {1 … c}. Unfortunately experts 
often provide preference relations that are only partially consistent. In these 
cases it is possible to apply specific algorithms to improve consistency [26]. 

 
Figure 3. A sample set of linguistic terms for fuzzy estimates 

With fuzzy preference relations (FPRs) each expert specifies the degree 
to which each alternative #p is at least as good as any other alternative #r 
with #p, #r ∈ ( by means of a fuzzy relation P. According to the definition 
of fuzzy relation given in section 1.3, a FPR P on X can be defined as a fuzzy 
set on ( × ( with a membership function $y :( × ( → [0,1] such that [27]: 

 $y (#p,#r) = ⎩{{{⎨
{{{⎧1 if #p is definitely preferred to #r,z ∈ (0.5, 1) if #p is slightly preferred to #r,0.5 if #p and #r are evenly preferred,{ ∈ (0, 0.5) if #r is slightly preferred to #p,0 if #r is definitely preferred to #p. (9) 

A FPR P can be conveniently represented as a c × c matrix | = (}pr) 
where }pr = $y (#p,#r). A FPR satisfying the additive reciprocity property so 
that }pr + }rp = 1 ∀ v, w ∈ {1,… , c}, is said to be reciprocal. This means that 
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the preference relation is asymmetric, i.e. if #p is preferred to #r then #r is 
not preferred to #p and, as a consequence, }pp = 0.5 ∀v ∈ {1,… , c} (i.e. any 
alternative is never preferred to itself). Moreover, a FPR that satisfies the 
additive transitivity property so that }pr + }rm + }mp = 1.5 ∀v, w, x ∈ {1,… , c}, 
is also said to be additive consistent [28]. 

Similarly to preference relations, in the elicitation process of FPRs it is 
necessary to collect c(c − 1) 2⁄  pairwise comparisons but it is also possible to 
collect just c − 1 preferences and estimate the missing ones by enforcing 
additive transitivity with methods described in section 1.7. Conversely, if an 
expert provides all preferences but the FPR values do not satisfy additive 
transitivity, it is also possible to improve such values by modifying them to 
guarantee an acceptable level of consistency [29]. 

Among the existing preference models, FPRs are one of the most diffused. 
According to [30], the main advantage of FPRs is that they allow experts to 
focus on two alternatives at a time facilitating, in this way, the expression of 
more accurate preferences with respect to non-pairwise methods. They also 
ensure a high level of expressiveness and translation techniques are available 
to convert preference information from any other representation model to 
FPRs and backward [2]. For this reason, in the next sub-sections we assume 
that experts’ preferences are available in form of FPR. 

1.5 Fuzzy Preferences Aggregation in GDM 
Once each expert am ∈ j has expressed her preferences on each alternative #p ∈ (, m individual FPRs |1,… , |k are available where |m = (}prm ). A first 
step needed to reach a final decision is to aggregate available individual FPRs 
into a collective one by using some aggregation operator [1]. Several operators 
have been proposed for this purpose by different researchers, each based on 
a different mapping from [0,1]k to [0,1]. We describe the most diffused.  

One of the simplest preferences aggregation operators is the Weighted 
Arithmetic Mean (WAM) [31]. Let (}pr1 ,… , }prk) with v, w ∈ {1,… , c} be a list 
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of preference values to aggregate, coming from |1,… , |k, the WAM operator 
on these values is defined as:  

 �!h(}pr1 ,… , }prk) = ∑ �m}prmk
m=1  (10) 

where �1,… , �k ∈ [0,1] are weights such that ∑ �m = 1km=1 . Weights may 
represent the relative importance of each expert or can be selected with the 
aim of maximizing the consistency of the resulting FPR [27]. 

Another aggregation operator is the Weighted Geometric Mean (WGM) 
[31] that can be defined as follows: 

 �gh (}pr1 ,… , }prk) = ∏(}prm )�� k
m=1  (11) 

where each symbol has the same meaning of equation (10). Both WAM and 
WGM have a compensatory behavior (i.e. they allow a bad evaluation given 
by an expert to be compensated by a good one from another expert) while 
the compensatory character of WGM is weaker than that of WAM [2]. 

A non-compensatory aggregation operator is min operator [32] that can 
be trivially defined as follows: 

 \vc(}pr1 ,… , }prk) = min1≤m≤k }prm  (12) 

where each symbol has the same meaning of equations (10) and (11). The 
min operator is particularly helpful when the group agrees that the collective 
decision should be pessimistic, in the sense that an alternative which was 
badly evaluated by any expert should be badly evaluated by the group in a 
non-compensatory way [2]. 

The Ordered Weighted Average (OWA) [33] is among the most diffused 
aggregation operators. It can be defined as follows: 
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 n�!(}pr1 ,… , }prk) = ∑ �m}pr�(m)k
m=1  (13) 

where each symbol has the same meaning of equations (10), (11) and (12) 
while �: {1, … \} → {1,… \} is a permutation function aimed at reordering 
the values to aggregate such that }pr�(m) ≥ }pr�(m+1) for x ∈ {1,… , \ − 1}.  

A basic aspect of this operator is the re-ordering step. In particular, the 
degree of membership of an element in a fuzzy set is not associated with a 
particular weight. Rather a weight is associated with a particular ordered 
position of a degree of membership in the ordered set of relevant degrees of 
membership [18].  

The behavior of OWA strictly depends on the used weight vector. In [22], 
the authors propose to initialize the weight vector starting from an increasing 
proportional linguistic quantifier to let OWA undertake the behavior of soft 
majority. While the majority is traditionally defined as a threshold number 
of individuals, soft majority is a fuzzy concept which is controlled through 
linguistically quantified propositions. 

Quantifiers represent the amount of items satisfying a given statement. 
While classical logic is restricted to the use of two quantifiers (there exists, 
for all), human discourse is much richer and more diverse in its quantifiers 
(about 10, almost all, a few, many, most, as many as possible, nearly half, at 
least half, etc.). Linguistic quantifiers have been introduced in [34] to bridge 
the gap between formal systems and natural discourse. In particular, absolute 
linguistic quantifiers (about 2, more than 5, etc.) are represented as fuzzy 
subsets of ℝ+, while proportional linguistic quantifiers (most, at least half, 
etc.) are represented as fuzzy subsets of the unit interval [0,1]. 

Given a proportional linguistic quantifier Q, the membership function $�(�) represents the degree to which the proportion � ∈ [0,1] is consistent 
with the meaning of Q. Functionally, linguistic quantifiers can be increasing 
(most, at least half, etc.), decreasing (a few, at most half, etc.) or unimodal 
(about half, about all, etc.). In particular, increasing quantifiers satisfy the 
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property: $�(�1) ≥ $�(�2) for any �1 > �2. The membership function $�(�) 
of an increasing proportional linguistic quantifier Q can be written as:  

 $�(�) = ⎩{⎨{⎧
0 if � < z,� − z{ − z if z ≤ � ≤ {,1 if � > {.  (14) 

with z, {, � ∈ [0,1]. Examples of increasing proportional linguistic quantifiers 
and the related membership functions are shown in Figure 4. The parameters (z, {) of such quantifiers are: (0,1); (0,0.5); (0.3,0.8); (0.5,1) respectively.  

 

 
Figure 4. Example of increasing proportional linguistic quantifiers 

The weights of an OWA operator of dimension m can be obtained from 
an increasing proportional linguistic quantifier as follows [33]:  

 �m = $� ( x\) − $� (x − 1\ ) ;  x ∈ {1,… , \}. (15) 
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where the quantifier Q must be selected to reflect the fusion strategy that 
the decision makers would apply (i.e. the ratio of experts that are expected 
to be satisfied with the aggregated preference value). In this way it is possible 
to obtain collective evaluations in which the opinions of most of the experts 
involved in the decision problem are considered. 

In this way, every collective preference }pr for v, w ∈ {1, … , c} is obtained 
as: }pr = n�!�(}pr1 ,… , }prk), where n�!� is the OWA operator initialized 
with the weights coming from the quantifier Q. By extending the notation to 
matrices, we can rewrite the equation as: | = n�!�(|1,… , |k).  

When the relative importance of each expert must be taken into account 
during the aggregation step (e.g. to reflect experts’ different backgrounds and 
levels of knowledge about the problem) specific versions of the OWA operator 
can be used. For example, the Induced OWA operator (IOWA) induces the 
reordering of the set of values to aggregate on the reordering of a set of values 
associated with them [35].  

Based on IOWA, the Importance IOWA operator (I-IOWA) has been 
defined in [36] to consider the importance of each expert in the aggregation 
step while being guided by a proportional quantifier as in equation (15). Let (}pr1 ,… , }prk) with v, w ∈ {1,… , c} be a list of preference values to aggregate, 
coming from the FRPs |1,… , |k, let �p ∈ [0,1] be the importance degree of 
each ap ∈ j and Q a non-decreasing proportional fuzzy quantifier, then the 
I-IOWA operator is defined as follows: 

 �-�n�!� ((}pr1 ,�1), … , (}prk, �k)) = ∑ �m}pr�(m)k
m=1  (16) 

were �: {1,… \} → {1, … \} is a permutation function so that ��(m) ≥ ��(m+1) 
for each x ∈ {1,… , \ − 1} and the k-th weight �m is obtained as follows: 

 �m = $� ( D(x)D(\)) − $� (D(x − 1)D(\) ) ;  x ∈ {1,… , \}. (17) 
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where D(x) = ∑ ��(m)m�=1 .  
Extending the notation to matrices, given a set of individual FPRs |1,… , |k and a vector of experts’ importance degrees 3 = (�1,… �k), the 

collective FPR P that takes into account the importance of each expert can 
be obtained as | = �-n�!�((|1,�1),… , (|k,�k)). 
1.6 Fuzzy Alternatives Ranking in GDM 
Once the individual FPRs have been aggregated in a collective one | = (}pr) 
through one of the methods described in section 1.5, the available alternatives 
must be rated associating a degree of preference �(#p) to each #p ∈ (. Then 
the best one (i.e. the one associated with the higher degree of preference) is 
selected. Several measures have been proposed so far to quantify the degree 
of preference of each alternative basing on the collective FPR. We describe 
below the most diffused ones. 

In [27] the degree of preference of each alternative is calculated in terms 
of Net Flow (NF) as follows: 

 ��� (#p) = ∑ !"#
$

#=1,#≠"
− ∑ !#"

$

#=1,#≠"
 (18) 

where the first summation is the leaving flow i.e. the total degree of preference 
of *+ over all the other alternatives, while the last summation is the entering 
flow i.e. the total degree of preference of all the other alternatives over *+.  

A different measure has been proposed in [37, 38] where the score of an 
alternative is calculated in term of Non-Dominance Degree (NDD) i.e. the 
degree in which the alternative is not dominated by the others: 

 ����(#p) = 1 − max1≤r≤l; r≠p(}rp − }pr, 0) (19) 
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In [22, 39] the Quantifier Guided Dominance Degree (QGDD) has been 
proposed to calculate the dominance that one alternative has over all the 
others in a soft majority sense: 

 �����(#p) = n�!�(}pr;  w = 1,… , c;  w ≠ v). (20) 

where n�!� specifies the OWA operator initialized with the weights coming 
from the increasing proportional linguistic quantifier Q as defined in 1.5. 

In [22, 39] the authors propose a NDD version named Quantifier Guided 
Non-Dominance Degree (QGNDD) to calculate the degree in which a given 
alternative is not dominated by a soft majority of the remaining ones: 

 ������(#p) = n�!� (1 − max1≤r≤l; r≠p(}rp − }pr, 0)). (21) 

When the quantifier Q represents the statement “all”, that has a membership 
function obtainable from equation (14) with z = { = 1, the definition of the 
QGNDD measure coincides with that of NDD. 

GGDD and QGNDD can be also used in combination. In particular, two 
different selection policies can be applied according to [22]: a sequential or a 
conjunctive one. In the sequential policy, a measure is selected and applied 
obtaining a selection set of alternatives reaching the maximum score. If such 
set includes more than one alternative, then the other measure is applied to 
select the alternative of the above set with the best score. In the conjunctive 
policy both measures are applied obtaining two distinct selection sets that 
are intersected to obtain the final one. This policy is more restrictive than 
the former because it is possible to obtain an empty selection set. In [39] it 
is suggested to apply the conjunctive policy as the first step and then apply 
the sequential one just in case the first one returns an empty set. 

After having rated the available alternatives with one (or a combination) 
of the described measures, the one with the highest degree of preference is 
the solution of the GDM problem. 



Background on Group Decision Making 35 

1.7 Dealing with Incomplete Information 
Sometimes, due to domain complexity, limited expertise or pressure to make 
a decision, it may be difficult or even impossible for an expert to express a 
preference on every pair of alternatives. This leads to incomplete FPRs where 
missing values have to be estimated in a non-contradictory way with respect 
to expressed preferences. Several methods have been proposed so far for this 
purpose as described below.  

In [40] a method to estimate the missing values of an FPR P by applying 
reciprocity and additive transitivity properties on the existing values of the 
same FPR is proposed. In fact, the definition of additive transitivity provided 
in section 1.4, allows to obtain the following three estimates of the preference }pr, of alternative #p over alternative #r, using an intermediate alternative #m 
with #p, #r, #m ∈ (: �m1(}pr) = }pm + }mr − 0.5; �m2(}pr) = }mr − }mp + 0.5; �m3(}pr) = }pm − }rm + 0.5. (22) 

If P is additive consistent, then �m1(}pr) = �m2(}pr) = �m3(}pr) for all values v, w, x ∈ {1,… , c}. Unfortunately, user defined FPRs are not always additive 
consistent. In this case it is still possible to use equation (22) to identify 
missing values that are as consistent as possible with the existing ones by 
mediating the estimates over any defined intermediate alternative. 

If � = {(v, w) | v, w ∈ {1, … , c}; }pr is defined in | } is a set including the 
positions of all the defined values of P and 3 = {(v, w) | v, w ∈ {1, … , c}} ∖ � 
is the set including the positions of the undefined ones, the overall estimator 
of a missing preference }pr with (v, w) ∈ 3 can be defined as follows: 

 �(}pr) = ∑ ∑ �m� (}pr)m∈����3�=1∑ ∣�pr� ∣3�=1  (23) 
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where the sets �pr1 = {x | (v, x), (x, w) ∈ �}, �pr2 = {x | (x, w), (x, v) ∈ �} and �pr3 = {x | (v, x), (w, x) ∈ �} include the indexes of the defined intermediate 
alternatives, useful for each estimator of }pr. 

The generation of missing values through equations (22) and (23) is done 
in several iterations. In each iteration new values are computed based on 
those previously known and added to the FPR. In particular, being | (0) the 
initial FPR and | (¡) the same FPR after t iterations, the missing FPR values 
that can be estimated at step i + 1 are: j(¡+1) = {(v, w) ∈ 3 (¡) | �pr1(¡) ∪ �pr2(¡) ∪ �pr3(¡) ≠ ∅} (24) 

where 3 (¡) collects the position of undefined values of | (¡) while each �pr�(¡) 
(with 1 ≤ t ≤ 3) includes the indexes for the l-th estimator of }pr in | (¡). If 
at the t-th iteration the set j(¡+1) is empty, then no more elements of P can 
be estimated and the process stops.  

In [30], a different approach has been defined to estimate missing FPR 
values based on reciprocity and multiplicative transitivity. According to [41], 
a FPR P is multiplicative transitive if:  }p¤ ̇ ⋅ }rm ⋅ }mp = }pm ⋅ }mr ⋅ }rp ∀v, w, x ∈ {1,… , c}. (25) 

Applying equation (25), when an FPR P is multiplicative transitive, the 
preference }pr of alternative #p over alternative #r can be estimated using an 
intermediate alternative #m with #p, #r, #m ∈ ( in this way: �m(}pr) = }pm ⋅ }mr ⋅ }rp}rm ⋅ }mp . (26) 

By considering that, based on reciprocity, }pr = 1 − }rp∀ v, w ∈ {1, … , c}, we 
can modify equation (26) as follows:  �m(}pr) = }pm ⋅ }mr}pm ⋅ }mr + (1 − }pm) ⋅ (1 − }mr). (27) 
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When the FPR to be completed is not multiplicative transitive, it is still 
possible to use equation (27) to identify missing values that are as consistent 
as possible with the existing ones by mediating the estimates over any defined 
intermediate alternative. Let D and U be respectively the sets including the 
positions of defined and undefined elements of P (as previously defined) we 
can estimate a missing preference }pr with (v, w) ∈ 3 as follows 

 �(}pr) = ∑ �m(}pr)m∈���∣�pr∣ . (28) 

where the set �pr = {x | (v, x), (x, w) ∈ �} includes the indexes of any defined 
intermediate alternative between #p and #r, useful for the estimator. Also in 
this case the estimation of missing values proceeds in several iterations and 
the process stops when no additional elements can be estimated.  

Both methods described in this sub-section use FPR values related to an 
alternative to infer missing FPR values connected to the same alternative. If 
no preferences at all are available for a given alternative, then it is impossible 
to estimate any of them. This happens when does exist an alternative #p ∈ ( 
so that any }pr and }rp is undefined for any w ∈ {1,… , c}.  

In [42], the authors refer to this case as an ignorance situation and suggest 
to initialize missing FPR values with some seed values that are subsequently 
refined through an iterative process based on equations (22)-(23) or (27)-(28) 
to make them as consistent as possible with the existing values. Four different 
ways to obtain seed values have been proposed: 
• indifference: undefined preferences are initially set to 0.5; 
• alternative proximity: seed values are obtained from the preferences given 

by the same expert to similar alternatives (this implies having additional 
information on problem alternatives allowing to define a distance measure 
between them); 

• collective seed value: seed values are chosen from the collective FPR that 
is obtained by aggregating partial individual FPRs; 
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• expert proximity: seed values are chosen from the FPRs provided by the 

experts that are nearest to the expert whose FPR has to be completed 
(where distances between experts can be calculated by averaging the 
absolute differences between defined FPR values). 
The first approach is useful when there are no additional external sources 

of information about the problem and when a high FPRs consistency level is 
required. The second approach is only feasible when some kind of metadata 
on alternatives is available. The third and fourth approaches, making the 
opinions of the experts closer, are useful when a fast consensus is needed. The 
fourth approach is also able to maintain high the FPRs consistency level. 
The first two approaches are also named individual strategies because they 
rely on information coming from the same expert to estimate missing values 
while the last two are named social strategies because they use information 
coming from other experts.  

Once generated, seed values must be refined to make them more coherent 
with existing FPR values. If the set U includes the position of the undefined 
elements of P as defined before, in case of an ignorance situation, seed values 
are generated for any }pr so that (v, w) ∈ 3 and included in P. Then, �(}pr) is 
calculated through equations (23) or (28) for any }pr so that (v, w) ∈ 3 and 
obtained values are substituted to seed values in P. 

 
 
  



Chapter 2 

Modeling Expert Preferences with 
Fuzzy Rankings 

 
Although FPRs are among the most commonly used preference models in 
GDM, they are not free from drawbacks. First of all, especially when dealing 
with many alternatives, the definition of FPRs becomes complex and time-
consuming. Moreover they allow to focus on only two options at a time. This 
facilitates the expression of preferences but, on the other hand, let experts 
lose the global perception of the problem with the risk of introducing several 
inconsistencies that impact negatively on the whole decision process.  

For these reasons, different preference models are often adopted in real 
GDM settings (as reported in section 1.4) and, if necessary, transformation 
functions are applied to obtain equivalent FPRs. In this chapter we propose 
Fuzzy Rankings, a new preferences model that offers and higher level of user-
friendliness with respect to FPRs while trying to maintain an adequate level 
of expressiveness. Fuzzy rankings allow experts to focus on two alternatives 
at a time without losing the global picture so reducing inconsistencies. 

After having deepened the ordinal ranking model (already introduced in 
section 1.4), the proposed model for fuzzy rankings is described as a fuzzy 
extension of the ordinal one. Conversion algorithms from fuzzy rankings to 
FPRs and backward are then defined as well as similarity measures useful 
when evaluating the concordance between experts’ opinion. Eventually a 
comparison of the proposed model with related works is reported. 
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2.1 Ordinal Rankings 
As seen in section 1.4, the Ordinal Ranking is one of the simplest preference 
models for GDM. Let ( = {#1,… , #l} be a set of alternatives, an ordinal 
ranking on X specifies an ordering #�(1) ≻ ⋯ ≻ #�(l) between its elements 
where �: {1,… c} → {1,… c} is a permutation function. An ordinal ranking 
can be conveniently represented through an ordering array n = (o1,… , ol) 
where each element op ∈ {1,… , c} states the position of i-th alternative of X 
within the ranking.  

Example 1. Let ( = {#1, #2, #3} be a set of alternatives, the ordering array n = (2, 3, 1) specifies that the alternatives #1, #2 and #3 are ranked second, 
third and first respectively. Using the alternate notation, case we can describe 
the same ordinal ranking as: #3 ≻ #1 ≻ #2. 

In GDM problems, each expert ap ∈ j defines an individual ranking by 
specifying the ordering array np = (omp ) with v ∈ {1,… , \} and x ∈ {1,… , c} 
on the same set X. To assess the level of agreement between experts, several 
methods to evaluate ranking similarity have been defined so far by different 
researchers [43]. Let np and nr be two ordinal rankings on the same set X, 
the Kendall’s rank correlation coefficient [44, 45] is defined as: 

 ¨(np,nr) = 2(©pr − ªpr)c(c − 1)  (29) 

where ©pr is the number of concordant pairs and ªpr the number of discordant 
pairs between np and nr. A concordant pair is pair of alternatives of X which 
have the same order in the two rankings while a discordant pair is a pair of 
alternatives which have the opposite order in the two rankings. 

The Kendall’s rank correlation coefficient is normalized in [−1,1]. In the 
case of maximus similarity between np and nr (i.e. if rankings are identical), 
then ¨(np, nr) = 1. In the case of maximum dissimilarity (i.e. if one ranking 



Modeling Expert Preferences with Fuzzy Rankings 41 

is the reverse of the other), then ¨(np, nr) = −1. A value of zero indicates 
the absence of any association between the two rankings. 

Another measure of a correlation between rankings is the Spearman‘s 
rank correlation coefficient [46] that is defined as: 

 «(np, nr) = 1 − 6∑ (omp − omr )2lm=1c(c2 − 1)  (30) 

where omp  is the k-th element of np and omr  is the k-th element of nr. Also the 
Spearman‘s rank correlation coefficient is normalized in the interval [−1,1] 
and its interpretation is analogous to the previous ones. 

Example 2. Let ( = {#1,… , #5} be a set of alternatives, n1 = (5, 3, 4, 1, 2) 
and n2 = (4, 2, 5, 3, 1) two ordering arrays defined on X, where the first one 
represents the ranking #4 ≻ #5 ≻ #2 ≻ #3 ≻ #1 while the second represents 
the ranking #5 ≻ #2 ≻ #4 ≻ #1 ≻ #3. According to equations (29) and (30) 
we obtain that: ¨(n1,n2) = 0.4 and «(n1,n2) = 0.6. So both indexes show a 
positive correlation between the two rankings. 

In order to use ordinal rankings in conjunction with fuzzy models and 
methods for GDM, it can be convenient to convert them in FPRs. According 
to [2], it is possible to convert an ordering array O of size n into an c × c 
FPR | = (}pr) through any function : {1,… , c}2 → [0,1] satisfying the 
following conditions: 
• (op, or) is a non-increasing function of the first argument and a non-

decreasing function of the second argument; 
• (op,op) = 0.5 ∀v ∈ {1,… , c}; 
• (op, or) > 0.5 if op < or ∀v, w ∈ {1,… , c}; 
• (op, or) + (or, op) = 1 ∀v, w ∈ {1,… , c} (additive reciprocity). 

In [22] the following transformation function respecting these conditions 
has been proposed: 
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 }pr = (op, or) = 12(1 + or − opc − 1 ) (31) 

Moreover, the FPRs generated with this function are additive consistent with 
respect to the definition given in section 1.4. 

To transform a FPR back to an ordering array it is possible to associate 
a degree of preference �(#p) to any #p ∈ ( according to one of the FPR-based 
measures defined in section 1.6 and then rank the alternatives with respect 
to their associated degrees of preference.  

Example 3. Let ( = {#1, #2, #3, #4} be the set of available alternatives and n = (2, 1, 4, 3) be the ordering array provided by an expert. By applying the 
equation (31) it is possible to obtain the corresponding FPR: 

| = ⎝⎜⎜⎛
0.5 0.33 0.83 0.670.67 0.5 1 0.830.17 0 0.5 0.330.33 0.17 0.67 0.5 ⎠⎟⎟⎞ 

To transform P back to an ordinal ranking, it is possible to apply equation 
(18) to calculate the score of each alternative in terms of Net Flow as follows: ��� (#1) = 0.67; ��� (#2) = 2; ��� (#3) = −2; ��� (#4) = −0.67. According 
to these values, the ordering array that corresponds to P is: n = (2, 1, 4, 3) 
that is exactly the initial one.  

2.2 Evolution to Fuzzy Rankings  
Ordinal rankings can be considered too simplistic to model preferences in real 
GDM problems. Experts are sometimes unable to assign a precise position in 
a ranking to alternatives that are considered equivalent or, when a position 
can be assigned, experts may need to specify at what extent an alternative is 
better than the following one. To overcome these limitations, we introduce 
in this section the notion of Fuzzy Ranking that can be considered as a fair 



Modeling Expert Preferences with Fuzzy Rankings 43 

compromise between the expressive capability of FRPs and the user-
friendliness of ordinal rankings. 

A fuzzy ranking is a sequence @ = (#�(1) ´1 #�(2)  …  #�(m−1) ´m−1 #�(m)) 
with x ≤ c. Terms in odd positions in the sequence represent a subset of the 
alternatives, while �: {1,… c} → {1,… x} is a k-permutation function. Terms 
in even positions (separators) belong to the set of symbols D = {µ,>, ≥, ≈} 
and define a degree of preference between subsequent terms (with µ meaning 
“is much better than”, > “is better than”, ≥ “is a little better than” and ≈ 
“is similar to”). Each alternative appears at most once in the ranking so 
cycles are not allowed although partial rankings are admitted. 

Example 4. The fuzzy ranking @ = (#4 µ #5 ≈ #2 ≥ #3 > #1) defined on ( = {#1,… , #5} states that, according to expert’s opinion, the fourth 
alternative is much better than the fifth one that, in turn, is similar to the 
second one, while both are a little better than the third one that, in turn, is 
better than the first one. 

If we look at Example 4, it becomes clear that, by relying on standard 
ordinal rankings, it would have been impossible for the same expert to specify 
her belief so thoroughly. In fact, the ordinal ranking #4 ≻ #5 ≻ #2 ≻ #3 ≻ #1 
that can be extracted from R and can be summarized with the ordering array n = (5, 3, 4, 1, 2), has a deeply different semantics: ties are not allowed so the 
equivalent alternatives #5 and #2 are artificially ordered while the preference 
gaps between #4 and #5, #2 and #3, #3 and #1 seems comparable in O while 
they are very different in expert’s belief, as expressed in R. 

Figure 5 graphically illustrates the interpretation of the expert’s belief 
captured by the fuzzy ranking R of Example 4 and by the extracted ordinal 
ranking n. As it can be seen, fuzzy rankings offer more tools to highlight the 
differences between alternatives with respect to ordinal rankings. Inspired by 
studies on the use of linguistic labels in GDM like [47], the cardinality of S 
(i.e. the number of available symbols) has been chosen small enough so as 
not to impose useless precision to the experts and rich enough to allow a 
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discrimination of the relative performance of the alternatives. On the other 
hand, the possibility to compose fuzzy rankings by chaining alternatives and 
symbols, allows to indirectly express a wide variety of preference levels. 

 
Figure 5. Interpretation of the fuzzy ranking R coming from Example 4 and 

of the extracted ordinal ranking O 

As an option, experts may be allowed to provide multiple fuzzy rankings 
interesting disjoint subsets of X, rather than just one. In this way it is possible 
to deal with the case in which some options are considered as mutually 
incomparable. As for ordinal rankings, conversion algorithms to and from 
FPRs can be defined for fuzzy rankings, as well as similarity measures. Such 
methods are described in the next subsections. 

2.3 From Fuzzy Rankings to FPRs 
Starting from a fuzzy ranking @ = (#�(1) ´1 #�(2)  …  #�(m−1) ´m−1 #�(m)) it is 
possible to generate the corresponding FPR | = (}pr) in several ways. A first 
approach consists in associating a predefined preference degree ª(´) to each 
symbol ´ ∈ D and obtain FPR elements from R in this way: 

• }�(p)�(p+1) = ª(´p) ∀v ∈ {1,… , x − 1};  
• }�(p+1)�(p) = 1 − ª(´p) ∀v ∈ {1,… , x − 1}; 
• }�(p)�(p) = 0.5 ∀v{1,… , x}; (32) 

x 4 x 5 x 2 x 3 x 1

x 4 x 5x 2

x 3 x 1

O

R
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where the first statement transforms the degrees of preference embedded in 
R in values of P, while the second and third statements are aimed at ensuring 
the reciprocity of P according to the definition given in section 1.4. A feasible 
set of values for the function ª(´) is shown in Table 1 (second column).  

 
Symbol Preference degree ª(´) Relative strength |´| µ 0.85 2 > 0.65 1 ≥ 0.58 0.5 ≈ 0.50 0 

Table 1. Feasible values for the preference degree and the relative strength 
associated to ranking string symbols 

It should be noted that, by applying equations (32) on a fuzzy ranking 
R, only 3x − 2 elements of P can be defined. Even in the case that R involves 
all available alternatives, (i.e. when x = c), a number of c2 − 3c + 2 elements 
of P remain undefined and should be estimated through one of the methods 
proposed in section 1.7. Moreover, the generated FPR, even when completed 
in this way, is not guaranteed to be additive consistent.  

Example 5. If @ = (#4 µ #5 ≈ #2 ≥ #3 > #1) is a fuzzy ranking on the set ( = {#1,… , #5}, the following FPR is generated according to equation (32) 
using preferences degree values coming from Table 1. 

| = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 − 0.35 − −− 0.5 0.58 − 0.50.65 0.42 0.5 − −− − − 0.5 0.85− 0.5 − 0.15 0.5 ⎠⎟⎟⎟⎟⎟

⎞
 

where the symbol – indicates an undefined cell. Applying equations (22)-(23) 
on P we can obtain the missing values as follows: 
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| = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.27 0.35 0 0.270.73 0.5 0.58 0.15 0.50.65 0.42 0.5 0.07 0.421 0.85 0.93 0.5 0.850.73 0.5 0.58 0.15 0.5 ⎠⎟⎟⎟⎟⎟

⎞
 

A second approach for generating a FPR from a fuzzy ranking is through 
a transformation function similar to that described in section 2.1. A relative 
strength |s| is associated to each symbol ´ ∈ D and, given a fuzzy ranking R, 
a fractional rank �(#p) is associated to each alternative so that:  

• �(#�(1)) = 1;  
• �(#�(p)) = �(#�(p−1)) + |´p−1| ∀ v ∈ {2, … , x}; 
• �(#p) is undefined if �(v) is undefined i.e. if the i-th alternative 

does not appear in R. 

(33) 

A feasible set of relative strengths for proposed symbols is shown in Table 
1 (third column). The relative strength of each symbol has been selected so 
that each symbol doubles the strength of the next one. By only using the 
symbol >, the fuzzy ranking becomes an ordering of alternatives and equation 
(33) generates an ordering array as defined in section 2.1. The use of the 
symbols µ or ≥ in place of >, respectively doubles or halves the distance of 
the preceding and subsequent terms in the ranking while the use of ≈ means 
that the preceding and subsequent terms have the same rank. 

Then, for any pair of alternatives #p and #r appearing in R, basing on a 
modified version of equation (31), an element of P can be defined as follows:  

 }pr = 12(1 + �(#r) − �(#p)�\z# − 1 ) (34) 

where �\z# = �(#�(m)) is the maximum rank. The special case �\z# = 1, 
arising when an expert considers all alternatives as equivalent i.e. when she 
sets @ = (#�(1) ≈ ⋯ ≈ #�(m)), is handled by directly setting }pr = 0.5 for any 
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equation (34) it is possible to directly define x2 elements of the corresponding 
FPR. When R involves all alternatives, (i.e. when x = c), the generated FPR 
presents no undefined elements.  

Proposition. If | = (}pr) is a c × c FPR generated from a fuzzy ranking R 
according to equations (33)-(34), then the elements of P that exist verify the 
additive consistency property.  

Proof. According to the definition given in 1.4, P is additive consistent if }pr + }rm + }mp = 1.5 ∀v, w, x ∈ {1,… , c}. Based on equation (34) we obtain: 

}pr + }rm + }mp = 12(1 + �(#r) − �(#p)�\z# − 1 ) + 12(1 + �(#m) − �(#r)�\z# − 1 )
+ 12(1 + �(#p) − �(#m)�\z# − 1 )
= 32 + �(#r) − �(#p) + �(#m) − �(#r) + �(#p) − �(#m)2�\z# − 2 . 

For �\z# ≠ 1 and because the fraction numerator is equal to 0, we have that }pr + }rm + }mp = 3 2⁄ + 0 = 1.5 proofing that P is additive consistent. The 
case �\z# = 1, which leads to a 0 0⁄  indeterminate form, is treated separately 
by setting }pr = 0.5 ∀v, w ∈ {1,… , c}. In this case the proof that P is additive 
consistent is trivial given that: }pr + }rm + }mp = 0.5 + 0.5 + 0.5 = 1.5 ∀v, w, x ∈ {1,… , c}. 
Example 6. Let @ = (#4 µ #5 ≈ #2 ≥ #3 > #1) be the same fuzzy ranking 
of the previous example. Using relative strength values coming from Table 1 
in (33), we obtain the fractional rank of available alternative as: �(#1) = 4.5, �(#2) = 3, �(#3) = 3.5, �(#4) = 1, �(#5) = 3. Then, according to equation 
(34), it is possible to generate the corresponding FPR P as follows:  
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| = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.29 0.36 0 0.290.71 0.5 0.57 0.21 0.50.64 0.42 0.5 0.14 0.431 0.79 0.86 0.5 0.790.71 0.5 0.57 0.21 0.5 ⎠⎟⎟⎟⎟⎟

⎞. 
Differently from the previous example, there is no need to complete the FPR 
with techniques coming from section 1.7. Moreover, the resulting FPR can 
be shown to be additive consistent. 

2.4 From FPRs to Fuzzy Rankings 
In some cases it can be useful to translate the preferences expressed with a 
FPR back to a fuzzy ranking. This process can help making manifest and 
easy to understand experts’ defined FPRs or obtaining a meaningful ranking 
of available alternatives from the collective FPR.  

In both cases it is possible to calculate the degree of preference �(#p) of 
each alternative #p ∈ ( starting from a (individual or collective) FPR P with 
one of the methods defined in section 1.6. Then, the corresponding fuzzy 
ranking @ = (#�(1) ´1 #�(2)  …  #�(l−1) ´l−1 #�(l)) can be generated where � 
is a permutation function such that �(#�(p)) ≥ �(#�(p+1)) and ´p ∈ D for any v ∈ {1,… , c − 1}. Two approaches can be then adopted (reversing the two 
approaches proposed in section 2.3) to identify the symbols ´1,… , ´l−1. 

Given two adjacent alternatives #�(p) and #�(p+1) in R, the first approach 
determines the intermediate symbol ́ p from the preference value }�(p)�(p+1) of 
P as follows: 

 ´p = ⎩{{⎨
{{⎧≈ if }�(p)�(p+1) < 0.54≥ if 0.54 ≤ }�(p)�(p+1) < 0.62> if 0.62 ≤ }�(p)�(p+1) < 0.75µ if }�(p)�(p+1) ≥ 0.75  (35) 
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for any v ∈ {1,… , c − 1}, where the threshold values 0.54, 0.62 and 0.75 are 
obtained by averaging each pair of subsequent preference degree values from 
Table 1 (second column).  

This approach is practicable when the starting FPR respects additive or 
multiplicative transitivity properties defined in sections 1.4 and 1.7 i.e. when 
every FPR value is consistent to the others. Otherwise, it is possible to select 
one or more non-coherent preference values and, consequently, to generate 
incongruent ranking symbols. Moreover by directly referring to FPR values, 
the possible transformations introduced in the calculation of the degree of 
preference of each alternative, according to the methods defined in section 
1.6, are disregarded in the selection of the ranking symbols. 

Example 7. From the additive consistent FPR P resulting from Example 6 
it is possible to generate the degree of preference of each alternative in terms 
of Net Flow according to equation (18): ��� (#1) = −2.14; ��� (#2) = 0; ��� (#3) = −0.71; ��� (#4) = 2.86; ��� (#5) = 0. According to these values, 
it is possible to define the alternative ranking: #4 ≻ #2 ≻ #5 ≻ #3 ≻ #1, also 
representable with the ordering array n = (5, 2, 4, 1, 3). The corresponding 
fuzzy ranking and the related separators can be obtained from equation (35) 
basing on the FPR values: }4,2 = 0.79; }2,5 = 0.5; }5,3 = 0.57; }3,1 = 0.64 as 
follows: @ = (#4 µ #2 ≈ #5 ≥ #3 > #1). 

Given two adjacent alternatives #�(p) and #�(p+1) in a fuzzy ranking R, 
the second approach determines the intermediate symbol ´p from the degrees 
of preference �(#�(p)) and �(#�(p+1)) that can be associated to the alternatives 
according to one of the methods defined in section 1.6: 

 ´p = ⎩{{⎨
{{⎧≈ if �(#�(p+1)) − �(#�(p)) < 0.25 ⋅ e≥ if 0.25 ⋅ e ≤ �(#�(p+1)) − �(#�(p)) < 0.75 ⋅ e> if 0.75 ⋅ e ≤ �(#�(p+1)) − �(#�(p)) < 1.5 ⋅ eµ if (#�(p+1)) − �(#�(p)) ≥ 1.5 ⋅ e  (36) 
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where e is the average difference between the degrees of preference of two 
subsequent alternatives in the ranking: 

 e = 1c − 1∑ (�(#�(p+1)) − �(#�(p)))l−1
p=1  (37) 

and the threshold values 0.25, 0.75, 0.75 are obtained by averaging each pair 
of subsequent relative strength values from Table 1 (third column).  

Being based only on preference degrees associated to each alternative, the 
second approach is insensible to the level of consistency of the original FPR. 
Moreover, any transformations introduced in the calculation of such degrees 
of preference (according to the methods defined in section 1.6), is considered 
in the selection of the ranking symbols too. 

Example 8. From the FPR resulting from Example 6, after having generated 
the degree of preference of each alternative in terms of Net Flow, as seen in 
Example 7, the ordering array of available alternatives is: n = (5, 2, 4, 1, 3). 
By applying equation (37) on such degrees of preferences we obtain e = 1.25. 
Basing on equation (36) we can then obtain the fuzzy ranking of available 
alternatives as: @ = (#4 µ #2 ≈ #5 ≥ #3 > #1). 
2.5 Partial and Multiple Fuzzy Rankings 
As specified in section 2.2, each available alternative appears at most once in 
a fuzzy ranking so partial rankings i.e. rankings involving only k alternatives 
with x < c are admitted. The exclusion of one or more alternatives from a 
fuzzy ranking means that the expert who defined the ranking is unable to 
evaluate such alternatives or she considers them incomparable to the others.  

In such cases, the transformation methods defined in section 2.3 produce 
incomplete FPRs. In particular, if R is a partial fuzzy ranking on the set X 
and | = (}pr) is the corresponding FPR obtained with equations (32) or (33)-
(34), for any #p ∈ ( not included in R, the corresponding elements }pr and 
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ignorance situation that can be solved with specific methods based on the 
injection of seed values and their subsequent refinement to make them as 
consistent as possible with other values. 

Example 9. Let @ = (#4 µ #5 ≈ #2 > #1) be a partial fuzzy ranking on the 
set ( = {#1,… , #5}, using equation (33) with relative strength values coming 
from Table 1, we obtain the fractional rank of each alternative involved in R 
as: �(#1) = 4, �(#2) = 3, �(#4) = 1, �(#5) = 3. The fractional rank of #3 is 
undefined given that it does not appear in R. According to equation (34), it 
is then possible to generate the corresponding FPR P as follows:  

| = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.33 − 0 0.330.67 0.5 − 0.17 0.5− − − − −1 0.83 − 0.5 0.830.67 0.5 − 0.17 0.5 ⎠⎟⎟⎟⎟⎟

⎞. 
The third row and the third column of P are completely undefined because 
no information has been provided on #3. To complete P it is possible to inject 
seed values coming from other experts or similar alternatives according to 
section 1.7. The simpler (and rougher) method is to set undefined preferences 
to 0.5 assuming the indifference between #3 and any other alternative and 
then iterate equations (22)-(23) until convergence obtaining the following 
updated version of P: 

| = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.33 0.33 0 0.330.67 0.5 0.47 0.17 0.50.67 0.53 0.5 0.27 0.531 0.83 0.73 0.5 0.830.67 0.5 0.47 0.17 0.5 ⎠⎟⎟⎟⎟⎟

⎞. 
In order to make more evident the “artificial” evaluation made of alternative #3 it is possible to convert P back to a fuzzy ranking by calculating the degree 
of preference of alternatives in terms of Net Flow according to equation (18) 
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as follows: ��� (#1) = −2; ��� (#2) = −0.4; ��� (#3) = 0; ��� (#4) = 2.8; ��� (#5) = −0.4. The ordering array of alternatives is then: n = (5, 3, 2, 1, 4). 
By applying equation (37) we obtain e = 1.2. Basing on equation (36) we can 
then obtain the fuzzy ranking as follows: @ = (#4 µ #3 ≥ #2 ≈ #5 > #1). 

As anticipated in section 2.2, experts may be allowed to provide multiple 
fuzzy rankings: sets of partial fuzzy rankings @1,… , @� interesting disjoint 
subsets of X i.e. so that if an alternative #p ∈ ( appears in a component 
fuzzy ranking @r with w ∈ {1, . . , t}, then #p does not appear in any other 
component ranking @m with x ∈ {1, . . , t} ∖ {w}. The use of multiple fuzzy 
rankings allows experts to deal with subsets of alternatives they consider as 
mutually incomparable. 

To simplify the notation we can represent a multiple fuzzy ranking within 
a single sequence @ = (#�(1) ´1 #�(2)  …  #�(m−1) ´m−1 #�(m)) where terms in 
even positions belong to the upgraded set of symbols D ∪ {∧}. The additional 
symbol ∧ is used to interlock the component rankings @1,… , @� interesting 
disjoint subsets of X. Also in this case each alternative appears at most once 
in the ranking although partial rankings are admitted. 

Example 10. The fuzzy ranking @ = (#4 µ #1 ∧ #2 ≥ #3 > #5) defined on ( = {#1,… , #5} states that the fourth alternative is much better than the 
fifth one and that the second one is a little better than the third one that, in 
turn, is better than the first one. Moreover it manifests the expert’s inability 
to compare alternatives coming from the subset {#1, #4} with alternatives 
coming from {#2, #3, #5}. 

To obtain a FPR P from a multiple fuzzy ranking R it is enough to iterate 
equations (32) or (33)-(34) on any component ranking @1,… , @� of R and 
merge the obtained FPRs | 1,… , | �. Being @1,… , @� partial fuzzy rankings 
interesting disjoint subsets of X, for any pair of alternatives #p,#r ∈ ( there 
exist at most one FPR | m = (}prm ) with x ∈ {1, … , t} so that }prm  is defined. 
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For this reason, any element }pr of the overall FPR P can be obtained from 
the elements of | 1,… , | � as follows: 

 }pr = }prm : x ∈ {1, … , t}, }prm  is defined. (38) 

When for some v, w ∈ {1,… , c}, }prm  is undefined for any x ∈ {1,… , t} then }pr remains undefined too. This case happens when #p and #r only appear in 
different component rankings of R or when either #p or #r do not appear at 
all in any component ranking of R. In particular, the latter case happens 
when the multiple ranking only interests a subset of alternatives of X i.e. 
when it is also a partial ranking. 

Example 11. The multiple fuzzy ranking @ = (#4 µ #1 ∧ #2 ≥ #3 > #5) 
coming from the previous example can be split in the two component rankings @1 = (#4 µ #1) and @2 = (#2 ≥ #3 > #5). Applying equation (33) we obtain 
that �(#1) = 3, �(#2) = 1 from @1 and �(#2) = 1, �(#3) = 1.5, �(#5) = 2.5 
from @2. Applying equation (34) on such fractional ranks we then obtain the 
following FPRs:  

| 1 = ⎝⎜⎜⎜⎜⎜
⎛0.5 − − 0 −− − − − −− − − − −1 − − 0.5 −− − − − −⎠⎟⎟⎟⎟⎟

⎞ ; | 2 = ⎝⎜⎜⎜⎜
⎛− − − − −− 0.5 0.67 − 1− 0.33 0.5 − 0.83− − − − −− 0 0.17 − 0.5 ⎠⎟⎟⎟⎟

⎞. 
Merging | 1 and | 2 through equation (38) the following FPR is obtained: 

| = ⎝⎜⎜⎜⎜⎜
⎛0.5 − − 0 −− 0.5 0.67 − 1− 0.33 0.5 − 0.831 − − 0.5 −− 0 0.17 − 0.5 ⎠⎟⎟⎟⎟⎟

⎞. 
As it can be seen, preference values between alternatives from {#1,#4} (that 
are referenced in @1) and alternatives from {#2, #3, #5} (that are referenced 
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in @2) remain undefined. As for Example 9, also in this case it is possible to 
estimate missing values with one of the methods proposed in section 1.7. 

2.6 Similarity Between Fuzzy Rankings 
In order to assess the level of agreement between experts’ opinions, as for 
ordinal rankings, it is useful to define similarity measures also between fuzzy 
rankings. A feasible approach for that is to extend to fuzzy rankings the two 
similarity measures defined in section 2.1. 

Let @p and @r be two fuzzy rankings defined by the experts ap, ar ∈ j on 
the same set X, the Kendall’s rank correlation coefficient defined by equation 
(29) can be applied on @p and @r by computing the number ©pr of concordant 
pairs and the number ªpr of discordant pairs. Indeed, to take ties and partial 
rankings into account, it is needed to redefine ©pr and ªpr based on the notion 
of fractional rank defined in section 2.3. 

If �p(#m) denotes the fractional rank of an alternative #m ∈ ( in a fuzzy 
ranking @p and e�m�p = �p(#m) − �p(#�) for #m, #� ∈ (, we can say that (#m, #�) 
is a concordant pair between @p and @r if both alternatives appear in both 
rankings and the condition e�m�p ⋅ e�m�r > 0 or e�m�p = e�m�r = 0 is verified (i.e. e�m�p  and e�m�r  are both positive, both negative or both 0). Conversely, (#m, #�) 
is a discordant pair if both alternatives appear in @p and @r but the preceding 
condition is not met (i.e. e�m�p  and e�m�r  are one positive and the other negative 
or one equal to 0 and the other different from 0). Based on ©pr and ªpr we can 
define the Kendall’s correlation coefficient for fuzzy rankings as follows: 

 ¨(@p,@r) = 2(©pr − ªpr)x\z#pr(x\z#pr − 1) (39) 

where x\z#pr = max(xp, xr) while xp and xr are the number of alternatives 
involved, respectively, in @p and @r (with xp, xr ≤ c). 
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Example 12. Let @1,… , @5 be fuzzy rankings defined on ( = {#1,… , #5} 
as reported in the first column of Table 2, using the relative strength values 
from Table 1 in equation (33), we obtain, for each ranking @p, the fractional 
ranks �p(#1),… , �p(#5) of any alternative of X as reported in columns 2-6 of 
Table 2 for v ∈ {1, … ,5}. Then, exploiting the definition of concordant and 
discordant pairs previously reported, we obtain: ©1,2 = 6, ©1,3 = 10, ©1,4 = 6, ©1,5 = 1, ª1,2 = 4, ª1,3 = 0, ª1,4 = 0, ª1,5 = 9. Basing on such values and 
considering that x\z#pr = 5 for v, w ∈ {1,… ,5} we obtain from equation (39): ¨(@1,@2) = 0.2 (weak positive correlation), ¨(@1,@3) = 1 (equivalence), ¨(@1,@4) = 0.6 (moderate positive correlation), ¨(@1,@5) = −0.8 (strong 
negative correlation).  

 
Ranking �p(#1) �p(#2) �p(#3) �p(#4) �p(#5) @1 = (#4 µ #5 ≈ #2 ≥ #3 > #1)  4.5 3 3.5 1 3 @2 = (#5 > #4 ≥ #3 ≥ #2 ≈ #1)  3 3 2.5 2 1 @3 = (#4 ≥ #5 ≈ #2 µ #3 ≥ #1)  4 1.5 3.5 1 1.5 @4 = (#4 µ #5 ≈ #2 > #1)  4 3 − 1 3 @5 = (#3 ≈ #1 ≥ #5 µ #4 ≥ #5)  1 1.5 1 3.5 4 

Table 2. Five sample fuzzy rankings and the fractional rank of each 
involved alternative 

A limit of the Kendall’s correlation coefficient is that it considers only 
the position of alternatives in the ranking disregarding the preference gaps 
quantified by the separators. In Example 12, @1 and @3 are considered as 
equivalent even if, by looking at the separators used, we can see that the 
experts’ beliefs captured by the two rankings are quite different. In fact the 
preference gap between #4 and #5 is wide in @1 and thin in @3 while the 
preference gap between #2 and #3 is thin in @1 and wide in @3. 
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To take separators into account when computing the similarity between 
fuzzy rankings, we introduce the Spearman’s correlation coefficient for fuzzy 
rankings as follows: 

 «(@p,@r) = ∑ (�p(#m) − �¹̅̅̅̅̅)(�r(#m) − �¤̅̅̅ ̅̅ )lm=1√∑ (�p(#m) − �¹̅̅̅̅̅)lm=1 2 √∑ (�r(#m) − �¤̅̅̅ ̅̅ )lm=1 2 (40) 

where �¹̅̅̅̅̅ = 1l ∑ �p(#m)lm=1  is the average fractional rank extracted from @p and �¤̅̅̅ ̅̅  is the average fractional rank extracted from @r in the same way.  
Differently from the Kendall’s correlation coefficient for fuzzy rankings, 

the Spearman’s one cannot be directly obtained as an extension of equation 
(30) because, according to [46], such equation is inapplicable in case of ties. 
So equation (40) have been obtained from an alternative formulation of the 
Spearman’s rank correlation coefficient defined in [48] as the covariance of 
two statistical variables divided by the product of their standard deviations 
where the values are converted in ranks before calculation. 

Example 13. Let @1,… , @5 be the fuzzy rankings defined in Example 12 
and summarized in Table 2 with their fractional ranks. By applying equation 
(40) we obtain the following values for the Spearman’s correlation coefficient: «(@1, @2) = 0.41 (moderate positive correlation), «(@1, @3) = 0.83 (strong 
positive correlation), «(@1,@4) = 0.97 (very strong positive correlation), «(@1, @5) = −0.68 (moderate negative correlation).  

By looking at the results of Example 13, it can be seen that @1 and @3 
are only strongly correlated according to the Spearman’s coefficient rather 
than equivalent as in the previous case. This happens because the Spearman’s 
coefficient, being based on differences between fractional ranks, also takes 
into account the preference gaps quantified by the separators that are used 
within the fuzzy ranking.  
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2.7 Comparison with Related Works 
To the best of our knowledge, the concept of fuzzy ranking is quite new. 
Nevertheless, an alternative formulation has been only recently proposed in 
[49] as a generalization of crisp rankings. While in a crisp ranking each object 
is assigned just one position, in the fuzzy ranking model defined in [49], the 
same object may be assigned to many positions with different degrees of 
membership. So, to characterize it, an c × c ordering matrix R is used whose 
generic element �pr ∈ [0,1] denotes the membership degree of the i-th object 
to the j-th position and ∑ �pr =lp=1 ∑ �pr =lr=1 1 for all v, w ∈ {1,… , c}. 

The main difference with respect our model resides in the way the ranking 
concept is fuzzyfied. Instead of allowing the same object belong to multiple 
positions, in fact, our model allows to extend or contract the gap between 
subsequent positions to reinforce or weaken the ordering relation. As well as 
being more useful to support preferences expression in GDM, our approach 
also allows the use of a more compact and user-friendly notation for rankings 
definition. The definition of an ordering matrix, like that needed for the 
model described in [49] is in fact quite difficult and comparable to the direct 
definition of a FPR, nullifying in this way any advantage carried out by the 
adoption of an alternative model.  

In [50, 51] Linguistic Preference Relations (LPRs) have been defined as 
an alternative preference model with respect to FPRs. In LPRs, the relative 
preference of each alternative with respect to each other is expressed with a 
linguistic term rather than with a membership degree in [0,1]. A LPR can be 
so represented with an c × c matrix | = (}pr) where each element }pr states 
the linguistically assessed preference degree of the alternative #p over #r. 

Similarly to LPRs, fuzzy rankings allow to specify fuzzy statements about 
pairs of alternatives, differently from LPRs (where a linguistic term must be 
chosen for every pair of alternatives), in fuzzy rankings a fuzzy statement is 
specified only for a subset of all possible pairs i.e. only for alternatives that 
are adjacent in the ranking. On one hand, this allows fuzzy rankings to adopt 
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a more compact and meaningful notation; on the other hand, it is possible to 
easily infer missing preferences by avoiding inconsistencies. Moreover, while 
fuzzy rankings can be transformed in FPRs and processed with standard 
GDM methods and tools (discussed in section 1), LPRs need specific fuzzy 
extensions of such methods and tools. 

A topic quite related to fuzzy rankings is that of fuzzy numbers ranking. 
How to rank fuzzy numbers is an important problem in DM and GDM, and 
is particularly felt when experts use fuzzy estimates (maybe expressed in form 
of linguistic terms) to specify their preferences. According to [52], more than 
30 fuzzy ranking indices have been proposed since 1976 for this purpose. By 
directly using fuzzy rankings instead of fuzzy estimates to specify preferences 
can be considered as a convenient and user-friendly method to overcome the 
fuzzy numbers ranking issue. 

In [53, 54] the Fuzzy SQL (FSQL) language has been proposed to handle 
fuzzy information within databases. In order to perform queries involving 
fuzzy quantities, such language introduces several fuzzy comparators like: F= 
(fuzzy equal than), F<> (fuzzy different to), F> (fuzzy greater than), F>= 
(fuzzy greater or equal than), F< (fuzzy less than), F<= (fuzzy less or equal 
than), Fµ (fuzzy much greater than), F¾ (fuzzy much less than) where each 
comparator is associated to an algorithm able to compare fuzzy numbers as 
those used for ranking.  

As it can be noted, there is a substantial similarity between symbols used 
by fuzzy comparators and those adopted by fuzzy rankings. Nevertheless, 
fuzzy rankings use such symbols to state fuzzy relations about crisp objects 
rather than to assess if a crisp relation exists between fuzzy quantities. For 
this reason, even if syntactically similar, the semantics under these symbols 
is very different. 
 



Chapter 3 

A Fuzzy GDM Model Guided by 
Social Influence 

 
A promising research area in GDM is the study of interpersonal influence 
and its impact on the evolution of experts’ opinions. As seen in section 1, in 
conventional GDM models, a group of experts express their preferences on a 
finite set of alternatives, preferences are aggregated and the best alternative, 
satisfying the majority of experts, is selected. Nevertheless, in real situations, 
experts form their opinions in a complex interpersonal environment where 
preferences are liable to change due to social influence.  

In fact, experts are usually let free to interact and discuss each other 
exchanging opinions and information. During these interactions, experts with 
wider background, experience and knowledge are capable of influencing other 
experts. So, after a discussion, the preferences of such experts may undergo 
a modification due to social influence.  

To manage the effects of social influence in GDM, we propose in this 
section a Social Influence-Guided GDM model based on interpersonal trust. 
The assumption is that, the more an expert trusts another expert, the more 
her opinion is influenced by him. Elaborating on the definitions given in [55], 
the concept of trust is interpreted as the belief of an expert in the capability 
of another expert in finding the correct solution to a given problem. 

The proposed model adopts fuzzy rankings, defined in chapter 2, to collect 
both experts’ preferences on available alternatives and trust statements on 
other experts. Starting from collected information, possibly incomplete, the 
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configuration and the strengths of interpersonal influences are evaluated and 
represented through a Social Influence Network (SIN). The SIN, in its turn, 
is used to let the opinions expressed by each expert be completed (if partial) 
and evolved over time through the incorporation of elements captured from 
the opinion of trusted experts. The process then iterates until the convergence 
toward a shared solution to the GDM problem is reached. 

After having introduced background concepts on social influence and 
related theories, the proposed model is outlined and described in each step. 
The advantages of the proposed model with respect to other existing models 
are then presented as well as the results of an in silico simulation that also 
illustrates the opinions evolution process and its convergence properties. 

3.1 Theory of Social Influence and Opinion 
Change 

Influence modelling and the appraisal of its effect on opinion change has been 
studied in [56, 57]. Influence is capable of playing a key role in GDM too but, 
despite that, the introduction of GDM models that takes into account social 
influence have just recently been proposed [58, 59]. According to [56, 57], the 
influence can be modelled through a so-called Social Influence Network (SIN): 
a directed graph between the set of experts E and where each arc (ap, ar) has 
a weight �pr ∈ [0,1] that represents the strength of the influence of the j-th 
expert on the i-th one. Figure 6 shows an example of SIN.  

A SIN involving a set of experts j = {a1,… , ak} can be summarized by 
an \ × \ fuzzy adjacency matrix � = (�pr). In [56] it was suggested that 
the weights �p1,… , �pk are directly chosen by the expert ap ∈ j before she 
is informed of the preferences expressed by the others, on the basis of the 
relative importance she assigns to the opinion of the various experts, 
including himself. Selected weights must verify the normalization property so 
that: 
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 ∑ �pr = 1k
r=1  ∀ v ∈ {1, … , \} (41) 

If =(1) is an \ × 1 vector representing the initial experts’ opinions on a 
given alternative, it is supposed that, after having interacted, this opinion 
vector will change to =(2) = �=(1) due to interpersonal influence. If we 
suppose that each expert is informed that the others have changed their 
opinion, it is reasonable to expect that the expert will change again her 
opinion according to the same principle. By iterating the process, it is possible 
to obtain the experts’ opinion after t interactions as: 

 =(¡) = �=(¡−1). (42) 

In [56] it was demonstrated that, if there exists a positive integer t so 
that every element in at least one column of � ¡ is positive, then the m 
opinions are expected to converge to the same value. In [57] it was suggested 
to also specify the susceptibility of each expert ap to interpersonal influence 
as zpp ∈ [0,1]. Then, being =(1) the initial experts’ opinions, their opinions 
after t interactions are obtained iteratively as: 

 
Figure 6. A sample SIN composed by 4 nodes 

e1

e3

e2

e4

w1,1

w1,2 w2,1
w2,2

w3,3 w4,4
w3,4 w4,3

w1,3

w3,1

w2,4

w4,2

w1,4
w2,3

w4,1
w3,2



62 Fuzzy Models for Group Decision Making and their Applications 
 

 =(¡) = !�=(¡−1) + (� − !)=(1) (43) 

where A = ªvz¿(z11,… , zkk) and I is the \ × \ identity matrix. In other 
words, at each time, the current opinion of an expert is obtained as a linear 
combination of her initial opinion and the influenced opinion she had at the 
time immediately preceding. In [57] it was demonstrated that, if the matrix � − !�  is non-singular and =(∞) = lim¡→∞ =(¡) exists (i.e. the process reaches an 

equilibrium), then: 

 =(∞) = (� − !� )−1(� − !)=(1). (44) 

In [58], equations (43)-(44) have been applied for the first time in a GDM 
process where the experts provide opinions on a set ( = {#1,… , #l} of 
alternatives rather than on just one. For each expert ap, the initial degree of 
preference =pr(1) on each alternative #r is calculated starting from expert’s 
individual FPR via the application of the QGDD metric (as defined in section 
1.6) to all preference values of the j-th row of the corresponding FPR. 

Then, the influence model is applied on each column of the \ × c matrix ? (1) = (=pr(1)) by extending equation (44) to matrices and obtaining that: ? (∞) = (� − !� )−1(� − !)? (1) where the i-th row of ? (∞) represents the 
preferences of the expert ap after having introjected the opinions of her peers. 
Eventually, influenced preferences are aggregated, available alternatives are 
ranked and the final solution obtained. 

3.2 Outline of the Proposed Model 
Based on the works described in the preceding section, the proposed model 
is aimed at taking into account social influence within a GDM process both 
in general and, especially, in presence of incomplete information. The research 
assumptions on which the model is built are two: experts influence each other 
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and the more an expert trusts in the capability of another expert, the more 
her opinion is influenced by the trusted expert.  

To make the model immediately applicable in practice, fuzzy rankings 
(defined in chapter 2) have been adopted for preference modeling since they 
are user friendly and less vulnerable to inconstancies than FPRs. The same 
model is used to collect opinions on alternatives as well as trust statements 
on experts. Given a set of experts j = {a1,… , ak} and a set of alternatives ( = {#1,… , #l}, the model works through the following steps: 
1. opinions collection: each expert ap ∈ j specifies her preferences about 

alternatives in X in a (possibly partial or multiple) fuzzy ranking @p; 
2. trust statements collection: each expert ap ∈ j specifies the trust she has 

in all experts that belong to E (including himself) in a (possibly partial 
or multiple) fuzzy ranking @pÁ; 

3. fuzzy ranking conversion: fuzzy rankings @p and @pÁ are converted into 
the (possibly incomplete) individual FPRs |p and |pÁ for v ∈ {1, … , \}; 

4. social influence network generation: all FPRs |pÁ for v ∈ {1,… , \}, 
representing trust degrees between experts, are used to generate a SIN 
characterized by the \ × \ fuzzy adjacency matrix W; 

5. missing preferences estimation: any individual FPR |p for v ∈ {1,… , \}, 
in presence of missing information, is completed by injecting values from 
other FPRs according to influence information gathered by the SIN; 

6. influence-guided preferences evolution: to simulate the effects of experts’ 
interpersonal influence, any individual FPR |p for v ∈ {1,… , \}, once 
completed, is updated according to the SIN until convergence; 

7. preferences aggregation: the individual FPRs |p for v ∈ {1,… , \} once 
updated according to the previous step, are aggregated through OWA to 
obtain the collective FPR P. 

8. alternative selection: the dominance degree �(#p) is estimated for each 
alternative #p ∈ ( according to P, then the alternatives are ranked from 
the best to the worst and the first one is selected. 
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The information flow among the described steps is summarized in Figure 
7 while the next sections provide details on each step. In particular section 
3.3 deals with the collection of opinions and trust statements, their conversion 
into FPRs and the subsequent generation of the SIN (steps 1-4); section 3.4 
explains how the generated SIN is applied to estimate missing preferences 
(step 5); section 3.5 deals with the application of the influence model on 
obtained FPRs, their aggregation and alternative selection (steps 6-8). 

  

Figure 7. The information flow between model steps 
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3.3 FPRs and SIN Generation 
Fuzzy rankings are used in our model to let experts express their opinion 
with respect to (a subset of) alternatives as well as their trust on (a subset 
of) experts. More formally, each expert am ∈ j provides a fuzzy ranking @m 
on the set of alternatives in X and a fuzzy ranking @mÁ on the set of experts 
E (including himself). Starting from @m and @mÁ, by applying equation (34), 
the corresponding (incomplete) FPRs |m and |mÁ are computed and taken 
forward to the next steps.  

Example 14. Let us suppose that we have a set ( = {#1, #2, #3, #4, #5} of 
alternatives and a set j = {a1, a2, a3} of experts, that expert a1 provides the 
fuzzy ranking of alternatives: @1 = #4 µ #5 ≈ #2 ≥ #1 and the fuzzy ranking 
of experts: @1Á = a2 µ a1 ≈ a3. In @1 the expert states that the alternative #4 
is much better than #5 and #2 that, in their turn, are a little better than #1. 
In @1Á the expert states that she thinks that the expert a2 is much more 
trustable than both a1 (himself) and a3. Starting from @1 and @1Á, through 
equations (33)-(34), the following corresponding FPRs are obtained: 

|1 = ⎝⎜⎜⎜⎜⎜
⎛0.5 0.4 − 0 0.40.6 0.5 − 0.1 0.5− − − − −1 0.9 − 0.5 0.90.6 0.5 − 0.1 0.5⎠⎟⎟⎟⎟⎟

⎞ ; |1Á = (0.5 0 0.51 0.5 10.5 0 0.5). 
The opinions on experts collected in |mÁ = (}prÁm) for x ∈ {1,… , \} are 

used to generate a SIN. As explained in 3.1, a SIN is characterized by a fuzzy 
adjacency matrix � = (�m�) where each element �m� ∈ [0,1] represents the 
strength of the influence of the l-th expert on the k-th one for x, t ∈ {1,… , \}. 
So, the elements of k-th row of W can be obtained from |mÁ through FPR 
measures defined in section 1.6 like QGDD. Moreover, to comply the SIN 
property so that ∑ �mp = 1kp=1 , a normalization step is needed as follows: 
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 �m� = �m(a�)∑ �m(ap)kp=1  (45) 

where: 

 �m(a�) = n�!�(}�rÁm;  w = 1,… , \: }�rÁm is defined). (46) 

Undefined elements of |mÁ are not considered in equation (46); when the 
l-th row of |mÁ is undefined (i.e. when am expresses no preferences on a�) �m(a�) = 0; in the special case which the k-th expert only trusts himself, we 
obtain via equations (45)-(46): �m� = 0 for x ≠ t and �mm = 1 meaning that 
the expert is not influenced by any other. 

Example 15. Let X, E, @1Á and |1Á be as reported in Example 14, by applying 
equations (45)-(46) with values from |1Á and using the fuzzy quantifier (0,1) 
corresponding to the linguistic label “much” (see Figure 3) to guide the OWA 
operator, the obtained SIN weights referring to the expert a1 are: �1,1 = 0.17; �1,2 = 0.67; �1,3 = 0.17. If we suppose that the experts a2 and a3 define the 
following fuzzy ranking of experts: @2Á = a1 ≈ a2 µ a3 and @3Á = a3 > a2 > a1, 
then it is possible to obtain the SIN represented by the following matrix: 

� = (0.17 0.67 0.170.5 0.5 00.08 0.33 0.85). 
Being m the number of experts and n the number of alternatives, the 

time complexity of the whole FPRs generation step is Ä(\ ⋅ c2). Moreover, 
assuming that OWA uses state-of-the-art sorting algorithms, the overall time 
complexity of the SIN generation step is Ä(\ ⋅ c2 log c). 
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3.4 Using Social Influence to Estimate Missing 
Preferences 

When some experts express their opinions only on a subset of alternatives, 
incomplete FPRs are generated through equations (33)-(34). In particular, if 
the i-th alternative does not appear in a given fuzzy ranking, then both the 
i-th row and the i-th column of the corresponding FPR remain undefined 
(e.g. alternative #3 in Example 14). As seen in section 1.7, this is considered 
an ignorance situation that can be solved by selecting seed values to initialize 
the missing preferences and by iterating the equations (22)-(23) or (27)-(28) 
until the convergence is reached and the final estimates obtained. 

Several methods have been proposed so far to obtain seed values. Here 
we propose to obtain seed values from preferences provided by the experts 
that are trusted by the one whose FPR has to be completed. This is to say 
that, when an expert is asked to evaluate an unknown alternative, she forms 
her judgment using the opinion of experts she trusts.  

Based on the generated SIN, a missing preference }prm  of an FPR |m 
coming from am is estimated through the I-IOWA operator (defined in 1.5) 
where the preferences to aggregate come from all the defined FPRs |� with t ∈ {1,… , \} while the importance degrees come from W and represent the 
trust degree of am on each expert of E. More formally, basing on equation 
(16), a missing preference }prm  is estimated as follows: 

 �(}prm ) = �-�n�!� ((}pr� ,�m�);  t = 1,… , \: }pr�  is defined) (47) 

Undefined elements of |� for t ∈ {1,… , \} are not considered in equation 
(47). If seed values for some preferences are still missing (e.g. when the same 
preferences are missing in the FPRs of any trusted expert), then the 
estimation process based on equation (47) is repeated on FPRs injected with 
estimated values. The process is iterated until no additional seed values can 
be calculated. Then, the final estimates are computed through the iterative 
application of equations (22)-(23) or (27)-(28) until convergence is reached. 
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In some cases it is possible that some FPR value still remain undefined. 
Given an FPR |m and an alternative #p ∈ (, when none of the experts 
(directly or indirectly) trusted by am have an opinion on #p i.e. when }pr�  and }rp�  are undefined for any w ∈ {1, … , c} and any l so that a path (that excludes 
0-weighted arcs) from a� to am exists in the SIN, then both the i-th row and 
the i-th column of |m remain undefined.  

In case the SIN is a connected graph this means that all experts have no 
opinion on #p. This suggests that the alternative is of no interest for the 
whole group so it can be removed from X. Conversely, in case the SIN is 
disconnected, it is possible that other (untrusted) experts have provided an 
opinion on #p. In such cases #p can’t be removed and remaining undefined 
FPRs elements must be estimated through a different method among those 
discussed in 1.7 (e.g. through indifference by setting the seed value to 0.5). 

Example 16. Let X, E and |1 be as reported in Example 14, let W be the 
SIN adjacency matrix calculated in Example 15 and suppose that the experts a2, a3 ∈ j specify the following fuzzy rankings: @2 = #4 ≈ #5 > #3 > #2 and @3 = #3 ≈ #5 ≥ #4 µ #1. The FPRs corresponding to such fuzzy rankings, 
obtained through equations (33)-(34), are: 

|2 = ⎝⎜⎜⎜⎜
⎛− − − − −− 0.50 0.25 0 0− 0.75 0.50 0.25 0.25− 1 0.75 0.50 0.50− 1 0.75 0.50 0.50⎠⎟⎟⎟⎟

⎞ ; |3 = ⎝⎜⎜⎜⎜⎜
⎛0.50 − 0 0.10 0− − − − −1 − 0.50 0.60 0.500.90 − 0.40 0.50 0.401 − 0.50 0.60 0.50⎠⎟⎟⎟⎟⎟

⎞. 
Seed values for missing preferences of |1 are then generated from |2 and |3 
basing on the first row of W: �1,1 = 0.17; �1,2 = 0.67; �1,3 = 0.17 through 
equation (47) and using the quantifier (0,1) to guide the I-IOWA operator. 
Estimated values are: �(}1,31 ) = 0, �(}2,31 ) = 0.25, �(}3,11 ) = 1, �(}3,21 ) = 0.75, �(}3,31 ) = 0.5, �(}3,41 ) = 0.32, �(}3,51 ) = 0.3, �(}4,31 ) = 0.68, �(}5,31 ) = 0.7. By 
iteratively applying equations (22)-(23) until convergence and injecting the 
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last estimates in |1, the FPR coming from a1 is completed as follows (where 
injected values are reported in bold): 

|1 = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.4 Å. ÆÇ 0 0.40.6 0.5 Å. ÈÉ 0.1 0.5Å. ÊÆ Å. ËÊ Å. Ì Å. ÉÊ Å. ÌÇ1 0.9 Å. ÍÉ 0.5 0.90.6 0.5 Å. ÎÆ 0.1 0.5 ⎠⎟⎟⎟⎟⎟

⎞. 
The time complexity of the preference estimation step is affected by the 

number of missing preferences, being m the number of experts and n the 
number of alternatives. Assuming that I-OWA uses state-of-the-art sorting 
algorithms, the overall time complexity of this step can be asymptotically 
limited by Ω(\ ⋅ c2) and Ä(\ ⋅ c3 log c). 
3.5 Preferences Evolution and Best Alternative 

Selection 
To simulate the effects of social influence between experts, the individual 
FPRs obtained at the preceding steps are revised using the SIN generated 
with equations (45)-(46). The aim is to predict the final decision that will be 
adopted by the group of experts as a result of interaction, without the need 
to actually perform such interaction. To do that we apply an iterative process 
like that described in section 3.1 where at each step the individual FPR of 
each of the experts is slightly changed to take into account the influence 
coming from trusted experts. Differently from [58], in our model the influence 
model directly impacts individual FPRs rather than utility vectors obtained 
from them. 

Being |m(1) = (}prm(1)) the FPR representing the initial opinion of the k-th 
expert with x ∈ {1, … , \} and v, w ∈ {1, … , c}, it is possible to estimate the 
elements of the k-th expert’s FPR after t interactions based on the SIN fuzzy 
adjacency matrix W as follows: 
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 }prm(¡) = �-�n�!� ((}pr1(¡−1), �m1),… , (}prk(¡−1), �mk)). (48) 

In other words, at each step, each preference is updated by composing 
the current preference with preferences coming from all the experts via the 
I-IOWA operator. The importance degree of each contribution matches the 
strength of the social influence coming from W. Extending the notation to 
matrices, we can rewrite equation (48) as follows: 

 |m(¡) = �-�n�!� ((|1(¡−1),�m1),… , (|k(¡−1), �mk)). (49) 

Proposition. When the fuzzy quantifier Ð = (0,1), corresponding to the label 
“much” (see Figure 3), is used to obtain the I-IOWA weights, it can be 
demonstrated that, if there exists a positive integer l so that every element in 
at least one column o� �f  is positive, then all the FPRs |m(¡) for x ∈ {1, … , \} 
are expected to converge to the same FPR. 

Proof. Combining equation (48) with the definition of the I-IOWA operator 
provided by equations (16)-(17), we obtain that, being }m(¡) a generic element 
belonging to the FPR |m(¡) for x ∈ {1,… , \} and i > 1: }m(¡) = �-�n�!� ((}1(¡−1), �m1),… , (}k(¡−1), �mk))= ∑ ($� ( D(v)D(\)) − $� (D(v − 1)D(\) )) }�(p)(¡−1)k

p=1  

where D(v) = ∑ �m�(r)pr=1  and �: {1, … \} → {1,… \} denotes a permutation 

function so that ��(p) ≥ ��(p+1) for each v ∈ {1,… , \}. Being Ð = (0,1), by 
substituting z = 0 and { = 1 in equation (14) we obtain: $�(=) = H−01−0 = = for 0 ≤ = ≤ 1. Given that D(v) and D(\) are positive number and D(\) ≥ D(v) 
for 1 ≤ v ≤ \, then we can say that 0 ≤ J(p)J(k) ≤ 1 so $�( J(p)J(k)) = J(p)J(k). By 
substituting this in the preceding equation we obtain: 
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}m(¡) = ∑ ( D(v)D(\) − D(v − 1)D(\) ) }�(p)(¡−1)k
p=1 = ∑ ∑ �m�(r) − ∑ �m�(r)p−1r=1pr=1 ∑ �m�(r)kr=1 }�(p)(¡−1)k

p=1= ∑ �m�(p)∑ �m�(r)kr=1 }�(p)(¡−1).k
p=1  

Given that W is the fuzzy adjacency matrix of a SIN, thanks to equation (45) 
we have that: ∑ �mrkr=1 = 1 for any x ∈ {1,… , \}. Being � a permutation 

function, ∑ �m�(r)kr=1  simply sum the same elements in a different order so 

we can say that ∑ �m�(r)kr=1 = 1 too. By substituting this in the preceding 

equation we obtain: }m(¡) = ∑ �m�(p)}�(p)(¡−1)k
p=1 = ∑ �mp}p(¡−1)k

p=1 . 
If we build the vector }(¡) = (}1(¡) ,… , }k(¡))Ñ

including the same preference as 
expressed by all the m experts we can generalize the preceding equation using 
matrix notation as }(¡) = �}(¡−1) = � ¡−1}(1). As explained in [56], W can 
be so regarded as the one-step transition probability matrix of a Markov chain 
with m states and stationary transition probabilities. 
If there exists a positive integer l so that every element in at least one column 
of � � is positive then the Markov chain is said regular and, thanks to the 
limit theorem for regular finite Markov chains [60], it exists a value p so that tv\¡→∞ }m(¡) = } ∀x ∈ {1,… , \} i.e. the preferences expressed by the m experts 

converge to the same value p. By extending this result (that regards a generic 
FPR preference) to the whole FPR, we can say that, if conditions are met, 
all the FPRs |m(¡) for x ∈ {1, … , \} converge to the same FPR. 

In practical applications the preferences evolution may be stopped after 
a fixed number of iterations or when the average absolute difference between 
FPRs values in two subsequent steps is under a given threshold Ò i.e. when: 
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1\ ⋅ c2 ∑ ∣}prm(¡) − }prm(¡−1)∣1≤p,r≤l; 1≤m≤k ≤ Ò (50) 

When the stopping conditions are met, in case of lack of convergence, the 
obtained FPRs are aggregated through the n�!� operator defined in section 
1.5, whose weights are initialized according to equation (15). A score value �(#p) is then calculated for each #p ∈ ( through the QGDD operator defined 
by equation (20) and the best alternative is chosen as the result of the GDM 
problem. To obtain a more exhaustive and easy to understand solution to 
the problem, it is possible to convert the obtained score values back to a 
collective fuzzy ranking of alternatives through equations (36)-(37). 

Example 17. Let X, E, |1, |2, |3 and �  be as reported in the previous 
examples, using W, it is possible to complete the individual FPRs |2 and |3 
through equation (47) as follows (injected values are represented in bold): 

|2 = ⎝⎜⎜⎜⎜⎜
⎛ Å. Ì Å. ÌË Å. ÈÎ Å. ÍÍ Å. ÆËÅ. ÈÊ 0.5 0.25 0 0Å. ÌÉ 0.75 0.5 0.25 0.25Å. ÊË 1 0.75 0.5 0.5Å. ÍÊ 1 0.75 0.5 0.5 ⎠⎟⎟⎟⎟⎟

⎞ ; 
|3 = ⎝⎜⎜⎜⎜⎜

⎛ 0.5 Å. ÎÆ 0 0.1 0Å. ÌÇ Å. Ì Å. ÆÉ Å. ÆË Å. ÅÇ1 Å. ÊÊ 0.5 0.6 0.50.9 Å. ÊÎ 0.4 0.5 0.41 Å. ÇÆ 0.5 0.6 0.5 ⎠⎟⎟⎟⎟⎟
⎞. 

The completed FPRs are then updated according to equation (49) simulating 
the effect of social influence. The fuzzy quantifier Ð = (0,1), corresponding 
to the linguistic label “much”, is used to guide the I-IOWA operator. The 
following matrices represent the evolution of |1 after 2 and 6 iterations: 
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|1(2) = ⎝⎜⎜⎜⎜⎜
⎛ 0.5 0.51 0.26 0.07 0.170.45 0.5 0.24 0.04 0.10.65 0.76 0.5 0.31 0.350.89 0.56 0.69 0.5 0.550.78 0.9 0.65 0.45 0.5 ⎠⎟⎟⎟⎟⎟

⎞ ; 
|1(6) = ⎝⎜⎜⎜⎜⎜

⎛ 0.5 0.48 0.25 0.05 0.220.48 0.5 0.26 0.05 0.180.68 0.74 0.5 0.31 0.40.91 0.95 0.69 0.5 0.620.75 0.82 0.6 0.38 0.5 ⎠⎟⎟⎟⎟⎟
⎞. 

After 6 iterations all individual FPRs converge to | = |1(6) = |2(6) = |3(6) 
that can be considered as the collective preference relation of consensus (so 
there is no need for aggregation). By applying equation (20), the preference 
degrees associated to available alternatives are: �(#1) = 0.25; �(#2) = 0.24; �(#3) = 0.53; �(#4) = 0.79; �(#5) = 0.64. The best alternative is then #4 
which can be considered the solution of the GDM problem. Applying equations 
(36)-(37) it is also possible to obtain the following collective fuzzy ranking of 
problem alternatives: #4 > #5 > #3 µ #1 ≈ #2. 

Being m the number of experts and n the number of alternatives, the 
time complexity of each iteration of preferences evolution is Ä(\ ⋅ c3 log c). 
Being the number of iterations limited by a constant, it can be considered as 
asymptotically negligible. The aggregation between FPRs (in case of lack of 
convergence) has a time complexity of Ä(\ ⋅ c3 log c), while the complexity 
of the alternative selection step is Ä(c2 log c). 
3.6 Numerical Example 
This section describes two in silico experiments of the proposed methodology 
aimed at illustrating its operational steps and convergence properties. Let j = {a1,… , a6} be a set of experts that have to choose the best alternative 
among those available in the set ( = {#1,… , #10}. According to the defined 
model, experts use fuzzy rankings to express their preferences on alternatives 
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and their trust on other experts. Defined fuzzy rankings are reported in Table 
3. As it can be seen, many experts provide incomplete information both with 
respect to alternatives and to other experts. For example a1 just evaluates 7 
alternatives over 10 and express her trust on 4 experts over 6.  

 
Expert Fuzzy rankings of alternatives Fuzzy rankings of experts a1 #5 µ #7 ≈ #8 ≥ #1 ≈ #3 > #4 µ #2 a2 µ a1 > a4 ≥ a5 a2 #10 ≈ #6 > #2 ≥ #1 µ #3 ≥ #9 ≈ #5 a3 > a2 ≈ a4 ≥ a5 > a6 a3 #3 ≈ #5 > #10 µ #1 > #2 > #6 ≈ #7 ≈ #8 a3 µ a6 ≥ a2 > a5 a4 #6 > #2 ≥ #1 > #9 ≈ #5 > #8 a4 > a3 > a2 ≈ a1 > a5 ≈ a6 a5 #3 > #5 µ #8 > #1 > #10 > #6 > #2 a3 ≥ a5 ≥ a6 > a1 ≈ a2 a6 #10 ≈ #4 > #5 µ #6 > #2 a6 µ a2 ≥ a5 > a4 
Table 3. Collected fuzzy rankings of alternatives and experts (first case) 

Applying equations (33)-(34), the fuzzy rankings on alternatives are 
converted into FPRs (see Table 4). As it can be seen, many elements remain 
undefined given the incompleteness of experts’ opinion.  

The same process is repeated with fuzzy rankings of experts and obtained 
FPRs (that are not reported for reasons of brevity) are, in turn, used to build 
a SIN via equations (45)-(46). It should be noted that, even if information on 
trust is incomplete, the SIN generation process is able to initialize any SIN 
weight. The obtained SIN, shown in Figure 8, can be summarized by the 
following fuzzy adjacency matrix:  

� = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.26 0.45 0 0.17 0.12 00 0.22 0.32 0.22 0.17 0.070 0.20 0.44 0 0.11 0.250.16 0.16 0.22 0.29 0.09 0.090.09 0.09 0.34 0 0.28 0.210 0.25 0 0.11 0.20 0.44⎠⎟⎟⎟⎟

⎟⎟⎟⎞. 
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 |1   |2 
0.50 0.77 0.50 0.59 0.27 - 0.45 0.45 - -  0.50 0.44 0.75 - 0.81 0.31 - - 0.81 0.31 
0.23 0.50 0.23 0.32 0.00 - 0.18 0.18 - -  0.56 0.50 0.81 - 0.88 0.38 - - 0.88 0.38 
0.50 0.77 0.50 0.59 0.27 - 0.45 0.45 - -  0.25 0.19 0.50 - 0.56 0.06 - - 0.56 0.06 
0.41 0.68 0.41 0.50 0.18 - 0.36 0.36 - -  - - - 0.50 - - - - - - 
0.73 1.00 0.73 0.82 0.50 - 0.68 0.68 - -  0.19 0.13 0.44 - 0.50 0.00 - - 0.50 0.00 

- - - - - 0.50 - - - -  0.69 0.63 0.94 - 1.00 0.50 - - 1.00 0.50 
0.55 0.82 0.55 0.64 0.32 - 0.50 0.50 - -  - - - - - - 0.50 - - - 
0.55 0.82 0.55 0.64 0.32 - 0.50 0.50 - -  - - - - - - - 0.50 - - 

- - - - - - - - 0.50 -  0.19 0.13 0.44 - 0.50 0.00 - - 0.50 0.00 
- - - - - - - - - 0.50  0.69 0.63 0.94 - 1.00 0.50 - - 1.00 0.50 |3  |4 

0.50 0.60 0.20 - 0.20 0.70 0.70 0.70 - 0.30  0.50 0.43 - - 0.64 0.29 - 0.79 0.64 - 
0.40 0.50 0.10 - 0.10 0.60 0.60 0.60 - 0.20  0.57 0.50 - - 0.71 0.36 - 0.86 0.71 - 
0.80 0.90 0.50 - 0.50 1.00 1.00 1.00 - 0.60  - - 0.50 - - - - - - - 

- - - 0.50 - - - - - -  - - - 0.50 - - - - - - 
0.80 0.90 0.50 - 0.50 1.00 1.00 1.00 - 0.60  0.36 0.29 - - 0.50 0.14 - 0.64 0.50 - 
0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  0.71 0.64 - - 0.86 0.50 - 1.00 0.86 - 
0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  - - - - - - 0.50 - - - 
0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  0.21 0.14 - - 0.36 0.00 - 0.50 0.36 - 

- - - - - - - - 0.50 -  0.36 0.29 - - 0.50 0.14 - 0.64 0.50 - 
0.70 0.80 0.40 - 0.40 0.90 0.90 0.90 - 0.50  - - - - - - - - - 0.50 |5  |6 
0.50 0.71 0.21 - 0.29 0.64 - 0.43 - 0.57  0.50 - - - - - - - - - 
0.29 0.50 0.00 - 0.07 0.43 - 0.21 - 0.36  - 0.50 - 0.00 0.13 0.38 - - - 0.00 
0.79 1.00 0.50 - 0.57 0.93 - 0.71 - 0.86  - - 0.50 - - - - - - - 

- - - 0.50 - - - - - -  - 1.00 - 0.50 0.63 0.88 - - - 0.50 
0.71 0.93 0.43 - 0.50 0.86 - 0.64 - 0.79  - 0.88 - 0.38 0.50 0.75 - - - 0.38 
0.36 0.57 0.07 - 0.14 0.50 - 0.29 - 0.43  - 0.63 - 0.13 0.25 0.50 - - - 0.13 

- - - - - - 0.50 - - -  - - - - - - 0.50 - - - 
0.57 0.79 0.29 - 0.36 0.71 - 0.50 - 0.64  - - - - - - - 0.50 - - 

- - - - - - - - 0.50 -  - - - - - - - - 0.50 - 
0.43 0.64 0.14 - 0.21 0.57 - 0.36 - 0.50  - 1.00 - 0.50 0.63 0.88 - - - 0.50 

                     

Table 4. Experts’ initial opinions converted in FPRs (first case) 
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Figure 8. The generated SIN (first case) 

Applying the process described in section 3.4 it is possible to estimate 
missing preferences injecting external seeds from trusted experts (according 
to the SIN) and to consolidate them through harmonization with existing 
preferences using the additive transitivity property. Completed FPRs are 
shown in Table 5. To make these results more readable, we apply equations 
(36)-(37) to obtain back the completed fuzzy rankings after the injection of 
external preferences. They are reported in Table 6.  

The next step consists in executing the process described in section 3.5 
to let experts’ preferences evolve according to social influence. The process is 
expected to converge since all the elements of at least one column of W are 
positive. In fact, after 5 iterations, the experts’ preferences converge to the 
same collective FPR P reported below:  
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 |1   |2 
0.50 0.77 0.50 0.59 0.27 0.32 0.45 0.45 0.62 0.35  0.50 0.44 0.75 0.38 0.81 0.31 0.70 0.69 0.81 0.31 
0.23 0.50 0.23 0.32 0.00 0.14 0.18 0.18 0.44 0.16  0.56 0.50 0.81 0.37 0.88 0.38 0.69 0.68 0.88 0.38 
0.50 0.77 0.50 0.59 0.27 0.27 0.45 0.45 0.57 0.30  0.25 0.19 0.50 0.26 0.56 0.06 0.58 0.57 0.56 0.06 
0.41 0.68 0.41 0.50 0.18 0.21 0.36 0.36 0.51 0.23  0.42 0.46 0.54 0.50 0.62 0.37 0.65 0.64 0.64 0.28 
0.73 1.00 0.73 0.82 0.50 0.41 0.68 0.68 0.71 0.44  0.19 0.13 0.44 0.21 0.50 0.00 0.53 0.52 0.50 0.00 
0.61 0.79 0.66 0.63 0.52 0.50 0.53 0.60 0.73 0.46  0.69 0.63 0.94 0.46 1.00 0.50 0.78 0.77 1.00 0.50 
0.55 0.82 0.55 0.64 0.32 0.30 0.50 0.50 0.60 0.33  0.20 0.24 0.32 0.11 0.40 0.15 0.50 0.42 0.42 0.06 
0.55 0.82 0.55 0.64 0.32 0.33 0.50 0.50 0.63 0.36  0.25 0.29 0.37 0.16 0.45 0.19 0.48 0.50 0.47 0.11 
0.31 0.50 0.36 0.33 0.22 0.14 0.23 0.30 0.50 0.16  0.19 0.13 0.44 0.12 0.50 0.00 0.44 0.43 0.50 0.00 
0.59 0.77 0.63 0.60 0.49 0.41 0.50 0.57 0.71 0.50  0.69 0.63 0.94 0.55 1.00 0.50 0.87 0.86 1.00 0.50 |3  |4 
0.50 0.60 0.20 0.32 0.20 0.70 0.70 0.70 0.63 0.30  0.50 0.43 0.42 0.50 0.64 0.29 0.60 0.79 0.64 0.34 
0.40 0.50 0.10 0.21 0.10 0.60 0.60 0.60 0.52 0.20  0.57 0.50 0.38 0.47 0.71 0.36 0.57 0.86 0.71 0.30 
0.80 0.90 0.50 0.54 0.50 1.00 1.00 1.00 0.84 0.60  0.58 0.62 0.50 0.59 0.62 0.53 0.69 0.79 0.69 0.42 
0.48 0.62 0.26 0.50 0.30 0.67 0.65 0.65 0.64 0.32  0.46 0.50 0.38 0.50 0.50 0.41 0.57 0.67 0.57 0.30 
0.80 0.90 0.50 0.53 0.50 1.00 1.00 1.00 0.84 0.60  0.36 0.29 0.38 0.47 0.50 0.14 0.57 0.64 0.50 0.30 
0.30 0.40 0.00 0.16 0.00 0.50 0.50 0.50 0.47 0.10  0.71 0.64 0.47 0.56 0.86 0.50 0.66 1.00 0.86 0.39 
0.30 0.40 0.00 0.11 0.00 0.50 0.50 0.50 0.42 0.10  0.37 0.40 0.28 0.37 0.40 0.31 0.50 0.57 0.47 0.20 
0.30 0.40 0.00 0.11 0.00 0.50 0.50 0.50 0.42 0.10  0.21 0.14 0.21 0.30 0.36 0.00 0.40 0.50 0.36 0.13 
0.24 0.38 0.02 0.09 0.06 0.43 0.41 0.41 0.50 0.08  0.36 0.29 0.24 0.33 0.50 0.14 0.43 0.64 0.50 0.16 
0.70 0.80 0.40 0.52 0.40 0.90 0.90 0.90 0.83 0.50  0.66 0.70 0.58 0.67 0.70 0.61 0.77 0.87 0.77 0.50 |5  |6 
0.50 0.71 0.21 0.49 0.29 0.64 0.65 0.43 0.67 0.57  0.50 0.61 0.44 0.31 0.44 0.51 0.35 0.50 0.61 0.33 
0.29 0.50 0.00 0.28 0.07 0.43 0.44 0.21 0.46 0.36  0.29 0.50 0.29 0.00 0.13 0.38 0.20 0.36 0.46 0.00 
0.79 1.00 0.50 0.69 0.57 0.93 0.85 0.71 0.86 0.86  0.43 0.61 0.50 0.31 0.44 0.50 0.34 0.50 0.61 0.32 
0.47 0.68 0.28 0.50 0.34 0.62 0.62 0.45 0.64 0.49  0.45 1.00 0.46 0.50 0.63 0.88 0.37 0.52 0.63 0.50 
0.71 0.93 0.43 0.63 0.50 0.86 0.79 0.64 0.80 0.79  0.46 0.88 0.46 0.38 0.50 0.75 0.37 0.52 0.63 0.38 
0.36 0.57 0.07 0.35 0.14 0.50 0.51 0.29 0.52 0.43  0.39 0.63 0.40 0.13 0.25 0.50 0.31 0.46 0.57 0.13 
0.32 0.52 0.12 0.31 0.18 0.46 0.50 0.29 0.48 0.33  0.29 0.47 0.29 0.17 0.30 0.36 0.50 0.35 0.46 0.18 
0.57 0.79 0.29 0.48 0.36 0.71 0.64 0.50 0.66 0.64  0.36 0.54 0.37 0.25 0.38 0.44 0.28 0.50 0.54 0.26 
0.23 0.44 0.04 0.23 0.10 0.38 0.38 0.21 0.50 0.25  0.26 0.44 0.26 0.14 0.27 0.33 0.17 0.32 0.50 0.15 
0.43 0.64 0.14 0.48 0.21 0.57 0.63 0.36 0.65 0.50  0.57 1.00 0.58 0.50 0.63 0.88 0.48 0.64 0.75 0.50 

                     

Table 5. Experts’ opinions completed with preferences injected from  
trusted experts (first case) 
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| =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.5 0.58 0.4 0.39 0.44 0.51 0.59 0.61 0.67 0.360.4 0.5 0.31 0.24 0.32 0.43 0.48 0.51 0.59 0.230.57 0.67 0.5 0.46 0.51 0.61 0.69 0.71 0.71 0.440.46 0.67 0.38 0.5 0.46 0.6 0.56 0.58 0.63 0.370.54 0.68 0.46 0.45 0.5 0.6 0.67 0.69 0.68 0.420.47 0.57 0.37 0.31 0.4 0.5 0.53 0.57 0.66 0.290.3 0.42 0.2 0.21 0.23 0.36 0.5 0.42 0.45 0.170.35 0.46 0.25 0.26 0.29 0.4 0.46 0.5 0.5 0.240.25 0.35 0.2 0.17 0.25 0.27 0.35 0.38 0.5 0.120.61 0.77 0.53 0.53 0.58 0.71 0.73 0.73 0.8 0.5 ⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞

 

From P, through equation (20), it is possible  to calculate the degrees of 
preference associated to each alternative in terms of dominance degree as 
follows: �(#1) = 0.51, �(#2) = 0.39, �(#3) = 0.6, �(#4) = 0.52, �(#5) = 0.58, �(#6) = 0.46, �(#7) = 0.31, �(#8) = 0.36, �(#9) = 0.26, �(#1) = 0.67. So, the 
best alternative is #10. In addition, the obtained dominance degrees can be 
used to generate the following collective fuzzy ranking of alternatives: #10 µ #3 ≥ #5 > #4 ≥ #1 > #6 µ #2 ≥ #8 > #7 > #9. 

Expert Completed fuzzy rankings of alternatives a1 #5 > #6 ≥ #10 > #7 ≈ #8 ≥ #1 ≥ #3 µ #4 µ #9 > #2 a2 #10 ≥ #6 µ #2 > #1 > #4 µ #3 ≥ #8 ≥ #5 ≥ #7 ≈ #9 a3 #3 ≈ #5 > #10 µ #4 ≥ #1 µ #2 µ #6 ≈ #7 ≈ #8 ≥ #9 a4 #10 ≥ #6 > #3 > #2 ≥ #1 ≥ #4 µ #5 ≥ #7 ≥ #9 µ #8 a5 #3 > #5 µ #8 > #1 ≈ #4 > #10 µ #6 ≥ #7 > #2 ≥ #9 a6 #10 > #4 > #5 µ #1 ≈ #3 > #8 ≥ #6 > #7 > #9 ≥ #2 
Table 6. Completed fuzzy rankings of alternatives (first case) 

Figure 9 shows the evolution of the degree of preference associated to 
each alternative for the involved experts, which elucidates the convergence 
process versus the final preferences. The x-axis represents the number of 
performed iterations while the y-axis represents the dominance degree of each 
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alternatives for each expert at a given iteration. Different colors correspond 
to different alternatives whose identifier is shown on the right. The first 5 
alternatives are plotted on the left, the last 5 on the right. The figure allows 
to easily perceive the final ranking but also shows the process dynamics that 
led to the generation of the final decision. For example, it can be noticed that 
the most controversial alternatives are #2 and #6 since the convergence on 
them is reached later than for the other alternatives.  

 
Figure 9. Evolution of preferences based on the influence model (first case) 

A special case is when W does not respect the conditions for convergence. 
Let us suppose that the previous experts provide the same opinions about 
the alternatives but different fuzzy rankings about experts (as shown in Table 
7). By applying equations (33)-(34), the fuzzy rankings are converted in FPRs 
and, then, used to build a SIN via equations (45)-(46). The SIN, shown in 
Figure 10, can be summarized by the following fuzzy adjacency matrix:  

� = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.61 0.28 0.11 0 0 00.17 0.67 0.17 0 0 00.33 0.33 0.33 0 0 00 0 0 0.67 0.17 0.170 0 0 0.17 0.67 0.170 0 0 0.5 0 0.5 ⎠⎟⎟⎟⎟

⎟⎟⎟⎞. 
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Expert Fuzzy rankings of alternatives Fuzzy rankings of experts a1 #5 µ #7 ≈ #8 ≥ #1 ≈ #3 > #4 µ #2 a1 > a2 ≥ a3 a2 #10 ≈ #6 > #2 ≥ #1 µ #3 ≥ #9 ≈ #5 a2 µ a1 ≈ a3 a3 #3 ≈ #5 > #10 µ #1 > #2 > #6 ≈ #7 ≈ #8 a1 ≈ a2 ≈ a3 a4 #6 > #2 ≥ #1 > #9 ≈ #5 > #8 a4 > a5 ≈ a6 a5 #3 > #5 µ #8 > #1 > #10 > #6 > #2 a5 ≥ a4 ≈ a6 a6 #10 ≈ #4 > #5 µ #6 > #2 a4 ≈ a6 > a5 
Table 7. Collected fuzzy rankings of alternatives and experts (second case) 

 
Figure 10. The generated SIN (second case) 

Like in the previous case, the experts are initially in disagreement but, 
unlike the previous case, they grant their trust only to a small subset of 
colleagues so as to create two unconnected subgroups. As it can be seen from 
Figure 10 (but also from W), experts a1, a2 and a3 do not provide trust 
information related experts a4, a5 and a6 and vice versa, so their preferences 
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are not mutually influenced by the model. It is easy to demonstrate that W 
does not meet the conditions for convergence since it is impossible to find a 
positive integer l so that every element in at least one column of � � is 
positive. So it is expected that the influence process does not converge.   

Since the fuzzy rankings on alternatives are the same as in the previous 
example, after conversion, the obtained FPRs are the same already shown in 
Table 4. Obtained FPRs are then completed according to the new SIN and 
used as input for the influence model. The completed FPRs converted back 
into fuzzy rankings are reported in Table 8. After 8 interactions, each of the 
two subgroups of experts reaches internal consensus on a single FPR but the 
FPRs obtained by the two subgroups of experts are different (the two FPRs 
are reported in Table 9).  

Expert Completed fuzzy rankings of alternatives a1 #10 ≥ #5 µ #6 > #7 ≈ #8 ≥ #1 ≈ #3 µ #4 µ #9 > #2 a2 #10 ≥ #6 µ #2 ≥ #1 µ #7 ≈ #8 ≈ #4 ≥ #3 > #5 > #9 a3 #3 ≈ #5 µ #10 µ #1 µ #2 ≥ #4 > #6 ≈ #7 ≈ #8 ≥ #9 a4 #6 ≥ #3 µ #4 ≈ #2 ≥ #1 > #10 > #5 ≥ #7 ≈ #9 µ #8 a5 #3 > #5 µ #8 ≥ #4 > #1 > #10 ≥ #9 ≈ #7 ≥ #6 > #2 a6 #4 ≈ #10 µ #5 µ #1 ≥ #6 µ #3 ≥ #7 > #9 > #2 > #8 
Table 8. Completed fuzzy rankings of alternatives (first case) 

The evolution of the dominance degree of the first two alternatives is 
shown in Figure 11 where the x-axis represents the number of iterations and 
the y-axis represents the dominance degree of the plotted alternative for each 
expert at a given iteration. Different colors correspond to different experts, 
the identifiers for experts and alternatives are shown on the right. Equations 
(13)-(15) are used to aggregate the FPRs coming from the two subgroups of 
experts and the resulting dominance degrees, associated to each alternative, 
are: �(#1) = 0.48, �(#2) = 0.39, �(#3) = 0.51, �(#4) = 0.43, �(#5) = 0.49, 
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 �(#6) = 0.54, �(#7) = 0.36, �(#8) = 0.34, �(#9) = 0.28, �(#1) = 0.6. Again, 
the final group solution is #10, although the new collective fuzzy ranking of 
alternatives is:  #10 µ #6 > #3 ≥ #5 ≈ #1 > #4 > #2 > #7 ≥ #8 µ #9. | ′   | ′′ 
0,50 0,58 0,56 0,58 0,51 0,41 0,58 0,58 0,72 0,29  0,50 0,52 0,25 0,29 0,49 0,41 0,32 0,63 0,55 0,44 
0,42 0,50 0,48 0,45 0,43 0,36 0,46 0,46 0,67 0,24  0,43 0,50 0,15 0,15 0,41 0,38 0,23 0,60 0,52 0,29 
0,44 0,52 0,50 0,55 0,45 0,33 0,57 0,57 0,63 0,21  0,56 0,69 0,50 0,38 0,56 0,59 0,41 0,66 0,55 0,56 
0,36 0,48 0,39 0,50 0,31 0,28 0,44 0,44 0,52 0,13  0,46 0,70 0,30 0,50 0,53 0,60 0,37 0,58 0,51 0,51 
0,49 0,57 0,55 0,63 0,50 0,35 0,65 0,65 0,65 0,23  0,46 0,59 0,29 0,32 0,50 0,47 0,33 0,63 0,52 0,49 
0,58 0,63 0,66 0,59 0,63 0,50 0,63 0,63 0,80 0,37  0,54 0,62 0,25 0,25 0,53 0,50 0,33 0,71 0,64 0,40 
0,40 0,53 0,42 0,48 0,34 0,32 0,50 0,48 0,54 0,16  0,30 0,43 0,14 0,17 0,32 0,33 0,50 0,41 0,34 0,30 
0,40 0,53 0,42 0,48 0,34 0,32 0,48 0,50 0,54 0,16  0,30 0,35 0,15 0,17 0,32 0,24 0,20 0,50 0,37 0,33 
0,23 0,28 0,32 0,28 0,30 0,13 0,32 0,32 0,50 0,02  0,33 0,39 0,16 0,19 0,39 0,27 0,23 0,51 0,50 0,33 
0,70 0,75 0,78 0,73 0,76 0,61 0,79 0,79 0,91 0,50  0,42 0,66 0,24 0,32 0,46 0,55 0,31 0,52 0,45 0,50 

                     

Table 9. The influenced FPRs | ′ and | ′′ obtained within the first and  
the second experts’ subgroups (second case) 

 
Figure 11. Evolution of experts’ preferences for the alternatives  #1 and #2 (second case) 
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3.7 Comparison with Related Works 
As explained in section 3.1, the study of the effects of social influence in GDM 
has just begun and some early models dealing with influence are starting to 
be proposed. In [58], equations (43)-(44) have been applied for the first time 
in a GDM process to let the experts’ individual opinions evolve, according to 
a predefined SIN, before being aggregated to form the collective FPR. Even 
though it is based on modified versions of the same equations, in our model 
the SIN is not predefined but generated from trust statements expressed by 
the experts in the same form of preferences about alternatives. 

Interpersonal trust has been already used to improve the outcomes of a 
GDM process. In [61, 62], two models have been defined were each expert is 
explicitly asked to express their fuzzy trust statements on the other experts. 
Such statements are then aggregated and a global level of trust is calculated, 
associated to each expert and used to weight their opinions in the aggregation 
step. Instead, we propose to use trust statements to let the opinions of each 
expert evolve by incorporating elements captured from the opinion expressed 
by other experts she trusts.  

In [59], the social influence among experts is calculated by combining the 
number of common connections with the number of direct interactions over 
a social network. The obtained value is then used to infer missing FPR values 
by selecting values from the opinions of influencing experts. Despite this 
method automates the influence estimation process, it does not guarantee 
that the tie strength over a social network is a good approximation of how 
an opinion can be influenced with respect to a DM problem. Moreover it 
requires that all experts are active members of the same social network. 

It should be noted that, the use of data coming from social networks to 
support the DM process is not new. In [63] Social Network Analysis (SNA) 
is used to measure inter-organizational relationships to enhance a DM process 
for project selection while in [64] a consensus model based on SNA has been 
defined to reconcile conflicts in the collaborative annotation of media content.  
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According to [59], also in our model incomplete opinions are completed 
with data injected from trusted experts. In addition with respect to the same 
work, such opinions are further modified by simulating their evolution due 
to social influence. Moreover, unlike in [59, 61, 62], in our model the influence 
in not used to estimate a global importance level for each expert but to let 
the preference of each expert gradually evolve simulating interaction. 

Our model uses for the first time fuzzy rankings to represent experts’ 
opinions regarding both their preferences on the set of alternatives and their 
trust on other experts. Such preference model offers an higher degree of user 
friendliness and is less vulnerable to inconstancy than commonly used FPRs. 
Moreover, by asking experts to place themselves in the defined rankings, we 
avoid the complication of requiring the definition of a numerical value that 
represents the susceptibility level of each expert to influence (like in [58]) or 
a the interpersonal trust level as in [61, 62].  

Simulating the natural evolution of opinions thanks to discussion, our 
model also tries to obtain the convergence between the experts’ opinions. 
This is a distinctive feature with respect to existing models because social 
influence also impacts the preferences aggregation phase. In such sense, our 
model can be also used to support automated consensus processes. Table 10 
summarizes the differences and the advantages of the proposed model with 
respect to other existing ones. 

We believe that the defined model leads to a more accurate representation 
of the GDM process by formalizing important aspects that are commonly 
disregarded by other models. On the other hand, we estimate the level of 
social influence only based on interpersonal trust, without considering other 
psychological traits like leadership, charisma, persuasive ability, etc. that 
could strengthen or weaken influence when real interactions between experts 
take place. Nevertheless, we believe that the exclusion of these additional 
traits is advantageous and enables to reach more objective decisions.  
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The time complexity of the whole process embedded in the defined model 
is polynomial and limited by Ä(\ ⋅ c3 to¿ c) where m is the number of experts 
and n is the number of alternatives.  

 
 Our model 

Model defined 
in [58] 

Model defined 
in [59] 

Models in 
[61, 62]  

Estimation  
of Social 
Influence  

Fuzzy rankings  
of experts 

Predefined 
SIN 

SNA 
Numerical  
trust 
statements 

Representation  
of Social 
Influence  

SIN  SIN 
Normalized 
tie strength 

Normalized 
trust level 

Applications  
of Social 
Influence  

Estimation of 
missing  
preferences 
Evolution of 
preferences 
Selection of the 
best option 

Evolution of 
preferences 

Estimation of 
experts’  
importance  
Estimation of 
missing  
preferences 

Estimation 
of experts’  
importance  

Table 10. Comparison with other models 
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Chapter 4 

Applications to e-Learning 

This chapter, that opens the second part of this thesis work, is aimed at the 
application of the GDM models and techniques, defined in the first part, to 
support peer assessment both in standard and massive educational contexts. 
Massive Open Online Courses (MOOCs) are becoming increasingly popular 
in education but, to reach their full extent, they require the resolution of new 
issues like assessing students at a massive scale. A feasible approach to tackle 
this issue is peer assessment, in which students also play the role of assessor 
for assignments submitted by others. Unfortunately, students are unreliable 
graders so peer assessment often does not deliver accurate results.  

In this chapter, after having introduced the problem of student evaluation 
in massive contexts, peer assessment is described and formalized. Existing 
approaches, aimed at mitigating the problem of peer assessment reliability, 
are outlined and performance measures capable of establishing and comparing 
the goodness of different approaches are defined. Then, two novel approaches, 
aimed at improving peer assessment performance, are presented: the first one 
is based on graph mining techniques while the second one applies fuzzy GDM 
models and techniques defined in the first part.  

4.1 Student Assessment in Massive Courses 
The term MOOC was coined in 2008 to describe educational resources that 
show the following characteristics: Massive (there is no limit on attendance), 
Open (free of charge and accessible to anyone), Online (delivered via the 
Internet) and Courses (structured around a set of goals in a specific area of 
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study) [65]. Since their introduction MOOCs have become a popular trend in 
online learning. According to [66], until the end of 2016, a total of 6.850 
MOOCs have been launched from over 700 universities with the total number 
of students who signed up for at least one course estimated to be 58 million. 
Figure 12 shows the growth of MOOCs over years. 

 
Figure 12. Growth of MOOC courses (source: Class Central) 

According to [67], MOOCs are a continuation of the trend in innovation, 
experimentation and use of technology initiated by distance and on-line 
learning, to provide learning opportunities for large numbers of learners. 
Most of the discussions about MOOCs distinguish between two formats with 
two distinct pedagogical underpinnings [68]: cMOOCs, that are based on 
connectivism, emphasizes interaction with a distributed network of peers, 
learning artifacts, and learning technologies while xMOOCs, that are more 
structured and centralized, emphasize individual learning through video 
lectures and regular assessments. 

Due to their scale, MOOCs introduce new technical and pedagogical 
challenges that require overcoming the traditional e-learning model based on 
tutor assistance to maintain a cheap and unrestricted access to high quality 
resources. Because of the high number of students enrolled and the relatively 
small number of tutors, in fact, tutor involvement during delivery stages has 
to be limited to the most critical tasks [69]. 
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In [70], the key challenges that MOOCs designers and providers are facing 
are analysed. Massiveness and low teaching involvement have been identified 
as one of the biggest challenges. Moreover, since the heterogeneity of MOOC 
learners is high, and their level of maturity and experience is varied, courses 
have to be conceived taking into account different educational and cultural 
backgrounds. Another concern is a high students’ dropout rate, with several 
sources indicating that only 10% of participants finish the courses on average. 
However, some authors suggest that such statistics might be interpreted in 
the light on the different personal goals that motivate students’ attendance 
to a course besides finalizing it. 

According to the same work, among the key challenges of MOOCs, the 
assessment of students’ performance is one of the most prominent. In fact, 
given their discrepancy in number, it is not possible for the tutors to follow 
up with every student and review assignments individually. This also 
represents a major obstacle to the credential programs launched by MOOC 
players and targeted to people that want to achieve credits toward a degree 
or earn credentials to show to prospective employers. 

A typical approach to overcome the assessment problem is to use close 
questions in exams and assignments so that grading can be automated [71]. 
Unfortunately, automated grading is limited, disappointing and insufficient, 
with no partial marks and, in some cases, with no detailed explanations of 
answers. It may result particularly unsatisfactory when applied to complex 
tasks like the evaluation of the students’ ability of proving mathematical 
statements, expressing their critical thinking over an issue, demonstrating 
proficiency in skills like creative writing, etc. [72]. 

To overcome these limitations, an approach that is gaining a growing 
consensus is Peer Assessment that can support both the formative assessment 
task (aimed at monitoring student learning and providing ongoing feedback) 
and the summative assessment one (aimed at evaluating student learning at 
the end of the course). In peer assessment, students are required to grade a 
small number of their peers’ assignments as part of their own assignment. 
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The final grade of each student is then obtained by combining information 
provided by peers.  

The positive aspect of this approach is its capability of easily scale to any 
size: the number of assessors in fact naturally grows with the number of 
students. Conversely, its use may be seen as unprofessional and unreliable 
given that it is based on grades assigned by students lacking the needed 
expertise, both didactical and on the specific subject to be assessed. Some 
researches point out that students themselves seem to distrust the results of 
peer assessment [73]. To mitigate this issue, several corrected methods have 
been identified as described in the next section. 

4.2 Peer Assessment Methods 
Peer assessment has been used for many years as a tool to improve learning 
outcomes. In fact, the literature reports on many learning benefits for peer-
assessors like the exposure to different approaches, the development of self-
learning abilities, the enhancement of critical thinking, etc. [69]. Even if some 
studies suggest a good correlation between the results of peer assessment and 
instructor ratings in conventional classrooms and online courses (at least for 
specific, high structured domains), there is still a general concern on its use 
as a reliable strategy to approximate instructor marking [73]. 

Despite these concerns, given the growing diffusion of MOOCs and the 
related increasingly felt issue of students’ assessment, the application of peer 
assessment as an evaluation tool is increasing. To improve its accuracy, 
several approaches, at various stages of development, have been proposed so 
far as summarized below. 

The Calibrated Peer Review (CPR) proposes a calibration step to be 
performed by students before starting to assess other students’ assignments 
[74]. During the calibration step, each student rates a set of assignments that 
have been already rated by the instructor. The discrepancy between students’ 
and instructors’ grades measures the accuracy of each student and is used to 
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weight subsequent assessments provided by the same student. Obviously, the 
more accurate is an assessor, the more weight is given to her judgment on a 
peer assessment.  

CPR has been experimented in several contexts demonstrating to be an 
effective instructional tool. Despite that, it requires additional work from 
those students who are asked to take part in the calibration step. Moreover, 
this method does not take into account the progresses that students make 
over time until a new calibration step is done. For this reason, additional 
approaches have been defined able to automatically tune peer grades based 
on different parameters. 

In [75], three probabilistic models for tuning peer-provided grades are 
presented. Such models estimate the reliability of each assessor as well as her 
bias (i.e., a score reflecting the assessor’s tendency to inflate or deflate her 
grade) based on the analysis of grading performance on special “ground 
truth” submissions that are evaluated either by the instructor or by a big 
number of peers (hypothesising that the mean of many grades should tend 
toward the correct grade). Reliability and bias of each student are then used 
to tune the provided grades to other submissions. 

A similar approach has been applied in [76], where a Bayesian model has 
been used to calculate the bias of each peer assessor in general, on each item 
of an assessment rubric and as a function of the assessor grade assigned by 
the instructor. As in the previous case, obtained biases are used to tune the 
grades provided during peer assessment. Differently from the previous case, 
bias calculation is based on the results of a whole round of assessment rather 
than on just few “ground truth” submissions so, in the calibration step, the 
instructor should rate all the submissions. In [77] comparable results have 
been obtained with a hierarchical Bayesian model.  

The Vancouver algorithm, defined in [78], measures the grading accuracy 
of a student by comparing the grades given by her to each assignment with 
the average grade for that assignment. Differently from the other approaches, 
the assessor accuracy is used as a modifier of the assessor’s grade rather than 



94 Fuzzy Models for Group Decision Making and their Applications 
 
of assessees’ ones so that the student’s grade can reflect not only the quality 
of her homework but also the quality of her work as a reviewer. 

In [79] the ability of an assessor student to correctly rate peer students is 
assumed to be dependent on the grade obtained by the same student. In 
other words, final grades to be assigned to students are obtained by weighting 
the grades proposed by their assessors on the basis of the grades received by 
the assessors themselves. Given that students’ grades recursively depend on 
other students’ grades, an iterative algorithm, named PeerRank (inspired by 
Google PageRank [80]) is proposed for their calculation. The advantage of 
this approach, compared to the previous ones, is that it does not require any 
instructor’s intervention given that there is no need of a ground truth of 
professionally graded assignments. 

In [81] a different approach, aimed at making the assessment process as 
simple as possible, has been proposed. The authors have shown that ordinal 
feedback (e.g. “the report x is better than the report y”) is easier to provide 
and more reliable than cardinal one (e.g. “the grade of report x is a B”). 
Basing on that assumption, the authors have defined a probabilistic model 
for obtaining student grades starting from partial rankings provided by the 
peers. An experiment with real data have demonstrated that the performance 
of such method is at least competitive with cardinal methods for grade 
estimation, even though it requires less information from the graders.  

In [72], the authors have shown that Ordinal Peer Assessment is a highly 
effective and scalable solution for student evaluation. They have defined a 
model for distributing the assignments among peers so that the collected 
individual rankings can be merged into a global one that is as close as possible 
to the real ranking. They have demonstrated that, given k students, if each 
correctly ranks the received assignments, the defined aggregation method is 
able to recover a fraction 1 − Ä(1/x) of the true ranking. They have also 
demonstrated that the same ordinal peer assessment method is quite robust 
even when students have imperfect capabilities as graders. 
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With respect to the application of Fuzzy Set Theory to peer assessment, 
some experiment has been already performed so far. In [82], the students of 
a class have been asked to express a grade, in terms of a fuzzy value in [0,1], 
for each assignment coming from the other students in the same class. The 
final grade of each assignment is then obtained by averaging the proposed 
grades, weighted with respect to expertise levels assigned by the teacher. 

In [83], the authors have proposed a framework aimed at enhancing the 
effectiveness of peer assessment by letting students express peer grades as 
fuzzy membership functions with respect to a given set of assessment criteria. 
The proposed grades are then adapted basing on assessors’ learning styles 
(through defined heuristics) and differences among grades are reconciled 
through agent negotiation based on fuzzy constraints. 

In [84], the students of a class have been experimentally asked to evaluate 
the assignments coming from peers in terms of linguistic labels mapped to 
interval Type-2 fuzzy sets. Then, the final grade of each assignment has been 
obtained by aggregating the grades proposed by peers and weighting them 
with respect to the expertise levels assigned by the teachers. Obtained results 
have been re-mapped on linguistic labels to obtain the final literal grades.  

Basing on the reported literature, ordinal peer assessment methods have 
shown a more promising behavior with respect to cardinal ones. In particular, 
they overcome the problem that students may be grading on different scales 
in fact, by letting students propose ordinal statements rather than cardinal 
grades, there is no need to develop a scale from each student onto the peer 
assessment algorithm. On the other hand, the existing fuzzy-based methods 
seems to be mainly thought for small contexts and aimed at encouraging class 
students to participate in the evaluation of their learning, so enhancing their 
reflective and critical thinking, rather than at providing reliable grades for 
students in massive learning contexts. 
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4.3 Formalization of the Peer Assessment 
Problem 

In a typical peer assessment scenario an assignment is given to n different 
students D = {´1,… , ´l}. Each student elaborates her own solution (e.g. an 
essay, a set of answers to open-ended questions, etc.) generating a submission. 
Each student has then to grade m different submissions (with \ ≤ c) coming 
from other students (maybe based on an assessment rubric). 

The assignment of submissions to assessor students is performed in 
accordance to an assessment grid: a Boolean c × c matrix ! = (zpr) where zpr = 1 if the student ´r has to grade the submission of ´p while zpr = 0 
otherwise. The matrix A has the following properties:  
• the sum of the elements in each row and column is equal to m (i.e. each 

student grades and is graded by m other students);  
• the sum of the elements in the main diagonal is equal to 0 (i.e. nobody 

evaluates himself). 
A feasible way to build an assessment grid is by filling it at random with 

an algorithm preserving the above properties. A possible (non optimized) 
algorithm starts with an c × c null matrix and initializes its elements basing 
on the following equation: 

 zmod(v+w−1,c)+1,v = 1 ∀v ∈ {1, … , c}, w ∈ {1, … , \} (51) 

where mod indicates the remainder after division of the first term by the 
second one. The obtained matrix is then shuffled in several iterations by 
randomly selecting a couple of rows (or columns) v, w ∈ {1, … , c} such that zpr = zrp = 0 and swapping them. 

Then, in a Cardinal Peer Assessment setting, each student ´r ∈ D has to 
review and propose a grade for every peers’ submissions according to the 
assessment grid i.e. to all  students in Dr = {´p ∈ D| zpr = 1}. Proposed grades 
are collected in a c × c grades matrix g = (¿pr) whose generic element ¿pr, 
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so that 0 ≤ ¿pr ≤ 10, is the grade proposed by ́ r for ´p. The final grade ¿p for 
each student ´p ∈ D can be then obtained starting from G according to the 
adopted method among those discussed in section 4.2. 

In an ideal peer grading setting, every student performs the grading task 
so, the easiest way to estimate the final grade ¿p of any student ´p ∈ D is by 
averaging all the grades obtained by peers (a matrix row) as follows: 

 ¿p = 1\ ∑ ¿prl
r=1  ∀ 1 ≤ v ≤ c. (52) 

The same equation can be applied to non-ideal settings (when some 
students skip the grading task) by averaging on the total number \p′ < \ of 
grades proposed for i. Some authors propose to average all obtained grades 
apart the best and the worst, while other authors use the median in place of 
the average [78]. 

The assessment grid can be seen as the adjacency matrix of an m-regular 
directed graph where each node represents a student and each arc represents 
an assessment to be performed. In addition, the grades matrix can be seen as 
the weighted adjacency matrix of an m-regular directed graph where each 
node represents a student, each arc represents an assessment and the weight 
on arcs represent assigned grades. Figure 13 shows the graph interpretation 
of a grades matrix with 6 students and 2 submissions to be rated by each 
(i.e. so that c = 6 and \ = 2). 

Differently from the previous case, in a Ordinal Peer Assessment setting, 
each student ́ r is asked to define an ordinal ranking ≻r (see section 2.1) over 
the subset of her assessee Dr = {´1r ,… , ´kr } as follows: 

 ´�(1)r ≻r ´�(2)r ≻r … ≻r ´�(k)r  (53) 

where �: {1,… , \} → {1,… , \} is a permutation function. Equation (53) 
means that, according to ́ r, the submission of the student ́ �(1)r  is better than 
that of ´�(2)r , etc. According to the notation introduced in section 2.1, the 
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same ranking can be represented as an ordering array nr = (o1r ,… , olr ) where opr ∈ {1,… , \} represents the position, within the ranking, of the submission 
coming from the student ´pr ∈ Dr. 

 
Figure 13. Graph interpretation of peer assessment 

The ranking ≻r is undefined for elements not included in Dr so it is a 
partial ranking over S. The partial rankings defined by all students are so 
collected in a c × c ranking matrix @ = (�pr) whose generic element �pr is the 
position of ́ p in the ranking ≻r if ́ p ∈ Dr (i.e. the element opr from the ordering 
array nr), 0 otherwise. Starting from a ranking matrix, an aggregation rule 
is able to compute a complete ranking over the whole set of submissions.  

Several aggregation rules have been defined so far, according to the 
methods discussed in section 4.2. A simple and effective aggregation rule is 
the classical Borda count [85] where the partial ranking provided by each 
assessor is interpreted as follows: m points are given to the submission ranked 
first, m−1 points to the one ranked second, etc. The Borda score of the 
submission coming from ´p is then calculated as follows: 
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 /o�ªz(´p) = ∑ zpr ⋅ (\ − �pr + 1).l
r=1  (54) 

The global ranking is then computed by ordering all the submissions in 
decreasing order of their Borda scores.  

In [72], authors have demonstrated that Borda outperforms other, more 
complex aggregation rules like Random Serial Dictatorship [86] and Markov 
chain inspired methods [87] especially in case of imperfect grading (i.e. when 
partial rankings defined by students are not consistent to the ground truth). 
In [81] authors have defined other methods for ordinal peer assessment based 
on models that represent probabilistic distributions over rankings, obtained 
from the models of Mallows [88], Bradley-Terry [89] and Plackett-Luce [90]. 
Such methods have demonstrated better performance with respect to Borda 
also in case of imperfect grading and are also capable of detecting meaningful 
cardinal grades.  

4.4 Measuring Peer Assessment Performance 
The Root Mean Square Error (RMSE) is the most widely used performance 
indicator in peer assessment. Let ¿p be the final grade estimated for a student ´p through peer assessment and ¿¹̅̅̅ ̅̅ the ground truth i.e. a grade assigned to 
the same student by an experienced teacher for v ∈ {1,… , c}, the RMSE 
between estimated and real grades is calculated as follows: 

 @hDj = √∑ (¿p − ¿¹̅̅̅ ̅̅)2lp=1 c . (55) 

Statistically, the RMSE represents the sample standard deviation of the 
differences between predicted and observed values. The individual differences 
are called residuals when the calculation is performed over the data sample 
used for estimation, and prediction errors when it is performed out-of-sample. 
The RMSE allows to aggregate the magnitudes of the errors in predictions 
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for various times into a single measure of predictive power. It is a measure 
of accuracy and is used to compare forecasting errors of different models for 
a particular task [91]. 

The effect of each error on RMSE is proportional to the size of the squared 
error thus larger errors have a disproportionately large effect on RMSE. As 
a consequence, RMSE is sensitive to outliers. For this reason some researcher 
recommends the use of alternative error measures like the Mean Absolute 
Error (MAE) where the influence of each error is proportional to the absolute 
value of the error [92]. The MAE is defined as follows: 

 h!j = ∑ |¿p − ¿¹̅̅̅ ̅̅|lp=1 c  (56) 

where the symbols have the same meaning that in equation (55). 
RMSE and MAE both summarize performance in ways that disregard the 

direction of over- or under- prediction. Both measures are scale-dependent, 
therefore they cannot be used to make comparisons between models that 
operate on different scales. MAE has advantages in terms of interpretability 
over RMSE but it is less widespread with respect to the evaluation of models 
for peer assessment. 

If we refer to ordinal peer assessment, performance can be measured in 
terms of similarity between the ranking O estimated through peer assessment 
on the set S and the ground truth n̅ i.e. a ranking defined by an experienced 
teacher on the same set. The Kendall’s rank correlation coefficient ¨(n, n̅) 
or the Spearman’s rank correlation coefficient «(n, n̅) defined in section 2.1 
can be used for this purpose. A similar measure is the Percentage of Correctly 
Recovered Pairwise Relations (PCRPR) with respect to the ground truth 
[72] that can be calculated as follows: 

 |Ý@|@(n, n̅) = 2©c(c − 1) (57) 
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where c is the number of concordant pairs between n and n̅ i.e. the number 
of pair of elements of S which have the same order in the two rankings. 

While ̈  and « are normalized in [−1,1] (where 1 means identity, 0 means 
lack of correlation and −1 means reverse correlation), PCRPR is normalized 
in [0,1] (where 1 means identity, 0 means absence of association). It should 
be noted that while RMSE and MAE are error measures (so smaller values 
correspond to better models); ¨ , « and PCRPR are similarity measures (so 
higher values correspond to better models). 

4.5 Peer Assessment Methods based on Graph 
Mining 

In section 4.3, a graph interpretation of peer assessment is proposed where 
the grades matrix G is seen as the weighted adjacency matrix of an m-regular 
directed graph with nodes representing involved students and weighted arcs 
representing performed assessments. Basing on such interpretation, Graph 
Mining Peer Assessment (GMPA) methods estimate the final grade of each 
student with techniques based on graph theory. 

In [79] it has been proposed to weight the grade that each assessor student 
gives to another student by her own grade i.e. to use the grade of a student 
as a measure of her ability to grade correctly. Let g = (¿pr) be the grades 
matrix obtained by cardinal peer assessment on a set of submissions coming 
from students in D = {´1,… , ´l} according to an assessment grid ! = (zpr), 
the estimated grade ¿p of a ´p ∈ D can be so obtained as: 

 ¿p = ∑ ¿pr ⋅ ¿rr→p∑ ¿rr→p  (58) 

where both summations (at numerator and at denominator) are calculated 
over all students ´r that have evaluated ´p (indicated with w → v) i.e. such 
that zpr = 1. 
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Given that the grades of all assessor students are themselves weighted 
averages of grades obtained by their own assessors, an iterative process, 
named PeerRank, has been proposed to calculate the final grade of each 
student. Let be ¿p(¡) the grade of the student i at the t-th iteration, the grade 
of i at the iteration i + 1 is defined as:  

 ¿p(¡+1) = (1 − 8)¿p(¡) + 8 ∑ ¿pr ⋅ ¿r(¡)r→p∑ ¿r(¡)r→p  (59) 

where 0 ≤ 8 ≤ 10 is a constant affecting the convergence speed and ¿p0 is 
initialised by simply averaging all the grades obtained by peers according to 
equation (52).  

Equation (59) takes into account that each student only evaluates m 
peers according to the assessment grid. This is a more realistic setting with 
respect to the one described in [79] where each student is assumed to evaluate 
any other student. In the same paper, useful properties for the defined grade 
updating rule have been defined and it has been also demonstrated that, after 
a limited number of iterations, the rule converges to stable values. 

It is interesting to note that equation (59) is a variation of the Google 
PageRank rule proposed in [80]. While, in PageRank, Web pages are ranked 
according to the ranks of the Web pages that link to them, in PeerRank, a 
grade assigned by a student is weighted on the grade assigned to her by other 
students. So, equation (59) can be seen as an indicator of the centrality [93] 
of each node of the graph obtained from the grades matrix G. According to 
this interpretation we classify PeerRank under the GMPA umbrella as well 
as the derived methods described below. 

Equation (59) does not incentivize students to evaluate peers accurately. 
For this reason, in [79], the following update to the PeerRank rule has been 
proposed: 
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 ¿p(¡+1) = (1 − 8 − U)¿p(¡) + 8 ∑ ¿pr ⋅ ¿r(¡)r→p∑ ¿r¡r→p  + U ∑ 10 − ∣¿rp − ¿r¡∣r→p \  (60) 

where 0 ≤ U ≤ 1 is a constant, so that 8 + U ≤ 1, that weights the reward 
given to a student according to the inverse normalised absolute error in the 
grades provided by her. 

If U = 0 then equation (60) degenerates to equation (59). For U > 0, if ¿rp = ¿r(¡) for all w ∈ {1,… , c} so that zrp = 1, then all the grades assigned by ´p are accurate and the contribution of the third addendum is 10 ⋅ U. At the 
opposite, if ∣¿rp − ¿r(¡)∣ = 10 for all j so that zrp = 1, then the grades assigned 
by ´p are wrong and the contribution of the third addendum is 0. 

The updated PeerRank rule, described by equation (60), prescribes that 
the influence of the grade of an assessor student on any grade she proposes 
is linear. For sake of simplicity we can decompose equation (60) as the sum 
of tree different components as follows: 

 ¿p(¡+1) = (1 − 8 − U)¿p(¡) + 8dp(¡)  + Uep(¡) (61) 

where the constants 8 and U have the same meaning as in equation (60), dp(¡) 
is the contribution coming from peer graders while ep(¡) is the incentive for 
accurate grading. 

In order to improve the quality of the final grades, we propose an updated 
rule named F-PeerRank that applies a super-linear modifier to the grades 
proposed by peer assessors by modifying the dp(¡) component as follows: 

 dp(¡) = ∑ ¿pr ⋅ Þ(¿r(¡))r→p∑ Þ(¿r(¡))r→p  (62) 

The function f, that affects the contribution given by the grades proposed 
by other peers, has the purpose of minimizing the contribution of low skilled 
student while maximising those of high skilled ones. Feasible functions are 
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the power function Þ(#) = #l (for some c > 1) as well as the exponential one Þ(#) = a+ (with e being the Euler’s constant). 

Bringing this reasoning to the extreme, we can imagine to assign the 
maximum influence only to the best grader for each student and no influence 
at all to any other proposed grade. This is the case of another approach we 
propose, named BestPeer. It calculates a transitory grade ¿p′ for any student ´p with one of the previous methods and then assigns to each student the 
final grade ¿p according to the following rule: 

 ¿p = ¿v,argmaxw→v ¿w′  (63) 

where the function argmax (argument of the maximum) returns the value j 
so that ¿r′ is maximized for w ∈ {1,… , c} and zpr = 1. 

This method is capable of performing particularly well when, for each 
student, at least one good grader is available. Unfortunately, this condition 
cannot be granted with the random assessor-assessee assignment proposed by 
equation (51) that can generate settings in which some student is assessed 
by only unreliable graders (i.e. students with a low grade). In this case, even 
weighting the grades, the overall peer-assessment performance may be poor.  

Balancing reliable graders among students is a feasible approach to 
overcome this issue but, unfortunately, we have no information about the 
grades when the assessment grid is built. To overcome this issue it is possible 
to initialize the assessment grid ! = (zpr) based on grades coming from 
previous assessments. To do that, a feasible algorithm starts with a null 
matrix and initialises its elements according to the following equation: 

 zmod(\(v−1)+w−1),c)+1,�zcx(v) = 1 (64) 

for each 1 ≤ w ≤ c and 1 ≤ v ≤ \ and where �zcx(v) denotes the position of 
the i-th student in the list of the students ordered decreasingly on the average 
grade obtained in previous assessments. 
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Equation (64) does not ensure the fulfilment of the second property of 
assessment grids. For this reason another check is needed and, if zpp = 1 for 
some v ∈ {1,… , c}, then the closest column j of A so that zpr = 0 and exists 
a G ∈ {1,… , c} so that zTp = 0 and zpr = 1 is selected and the values of zpp 
and zpr are swapped as well as values of zTp and zTr. In other words, the 
student ´p does not assess himself anymore but the student ´T assigned to 
the closest performer ´r that, in turn, takes care of evaluating ´p. 

A second option for optimizing the assessor-assessee assignment is to 
proceed incrementally (i.e., to perform the assessment session in m rounds). 
In the first round, just one student to grade is assigned to each other student. 
In each subsequent round, students are ranked in two lists: list 1 orders 
students, decreasingly, on the average grade obtained in the preceding rounds 
(i.e. on their ability as graders); list 2 orders students, increasingly, on the 
average grade obtained by their graders in the preceding rounds (i.e. on the 
quality of obtained grades). 

Then, for the subsequent round, each student from list 1 has to grade the 
student from the list 2 with the same rank. This ensures that, in each step, 
the best graders are assigned to the students that, in the previous steps, have 
obtained grades from the worst ones. Some additional checks must be made 
to ensure that no student evaluates herself and that no student evaluates 
another student more than once.  

This method has the advantage that it does not need any information 
about past assessments. Conversely, its incremental nature requires that 
every grade is assigned for a given round before starting the next one. This 
constraint can be very expensive, especially in massive contexts, when some 
student may be late in providing grades or may not provide grades at all. 

4.6 Fuzzy Ordinal Peer Assessment 
A peer assessment problem, as formalized in section 4.3, can be seen as a 
special case of GDM problem. In a typical GDM problem, a group of experts 
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evaluate a set of alternatives, taking into account the involved factors and 
criteria, with the aim of selecting the best one to adopt. To this end, each 
expert expresses her preferences on alternatives, preferences are aggregated, 
a collective preference degree of each alternative is calculated and a ranking 
over alternatives is generated. 

Similarly, in peer assessment, the involved students evaluate submissions 
made by other students (rather than alternatives) and their evaluations are 
aggregated to obtain the grade of each submission (rather than the degree of 
preference of each alternative). For these reasons, a peer assessment problem 
can be regarded as a GDM problem where: 
• experts and alternatives belong to the same set (i.e. students evaluate the 

submissions made by other students);  
• each expert only ranks a small subset of alternatives (i.e. few submissions 

are evaluated by each student);  
• experts’ opinion is not fully reliable (it should be taken into account that 

students are far to be perfect assessors). 
These properties (in particular the last two) suggest to refer to GDM 

approaches able to deal with the uncertainty resulting from inaccuracy and 
lack of knowledge in experts’ evaluations, like those based on the fuzzy set 
theory. Following these considerations, this section introduces a new peer 
assessment model, named Fuzzy Ordinal Peer Assessment (FOPA) based on 
the GDM models and techniques defined in the first part of this thesis. 

As described in section 4.3, in ordinal peer assessment, each student of a 
set D = {´1,… , ´l} ranks the submissions coming from m other students 
according to an assessment grid ! = (zpr). By setting j = ( = D (where E 
and X are, respectively, the sets of experts and of alternatives of a standard 
GDM problem as seen in section 1) and assigning to each student ´m ∈ D a 
subset Dm = {´p ∈ D| zpm = 1} of submissions to be evaluated, we easily 
obtain the GDM problem corresponding to peer assessment. 

In ordinal peer assessment each student ́ m ∈ D is asked to define a partial 
ranking on Dm. By leveraging on GDM, preferences between the elements of 
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the assessor students, can then be aggregated and a global ranking of 
submissions can be calculated. Unfortunately, the definition of a FPR may 
result too complex and time-consuming for students with the risk of 
introducing errors and inconsistencies impacting assessment performances. 
To overcome this issue, FOPA adopts a simpler preference model based on 
fuzzy rankings (as defined in section 2).  

In FOPA each student ´m ∈ D proposes a fuzzy ranking @m over Dm (that 
is a partial fuzzy ranking over S). Each @m for x ∈ {1,… , c} is then converted 
in a FPR |m according to the methods introduced in section 2.3 and used for 
subsequent processing. The main advantage of this approach is that students 
not only order the submissions from the best to the worst but also express a 
degree of preference between them. As explained in the next section, this 
allows to obtain better performances when reconstructing the global ranking 
and, also, to obtain a reliable cardinal grade for each submission. Moreover, 
it mitigates the bias problem (seen in section 4.2) given that students provide 
relative evaluations that consider only a couple of submissions at a time. 

Example 18. Let D = {´1,… , ´6} be a set of students involved in a peer 
assessment session. Let us suppose that, according to a random assessment 
grid, the student ́ 1 has to evaluate the subset of students D1 = {´2,´4,´5, ´6} 
and that she provides the following fuzzy ranking: @1 = (´4 µ ´5 ≈ ´2 > ´6). 
The student states that, according to her opinion, the submission of ´4 is 
much better than that of ´5 and ´2 (considered at the same level) that, in 
turn, are better than that of ´6. Through equation (32) it is then possible to 
obtain the corresponding partial FPR as follows: 
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|1 = ⎝⎜⎜⎜⎜⎜
⎜⎜⎛− − − − − −− 0.50 − − 0.50 0.65− − − − − −− − − 0.50 0.85 −− 0.50 − 0.15 0.50 −− 0.35 − − − 0.50⎠⎟⎟⎟⎟⎟

⎟⎟⎞
 

where the symbol – indicates an undefined cell. Applying equations (22)-(23) 
on |1 we can obtain some of the missing values as follows: 

|1 = ⎝⎜⎜⎜⎜⎜
⎜⎜⎛− − − − − −− 0.50 − 0.15 0.50 0.65− − − − − −− 0.85 − 0.50 0.85 1.00− 0.50 − 0.15 0.50 0.65− 0.35 − 0.00 0.35 0.50⎠⎟⎟⎟⎟⎟

⎟⎟⎞
 

Given n students and m assignments per student, for every defined fuzzy 
ranking @m with x ∈ {1,… , c}, the conversion step produces an FPR |m 
where only a fraction of \2/c2 elements are defined. In real contexts, 
hundreds of students (thousands in MOOCs) have to be evaluated in total 
(so n becomes very large) while each student can be requested to evaluate 
only a small number of other submissions (so m remains small). This means 
that every |m becomes a sparse matrix with only few elements defined. 

When all individual FPRs |m = (}prm ) with x ∈ {1,… , c} are obtained, an 
aggregation step is needed to build the collective FPR | = (}pr). To do that, 
FOPA adopts the n� !� operator defined in section 1.5 with the exception 
that individual FPRs are incomplete so undefined elements must be excluded. 
To this end, the following equation, that combines and adapts equations (13) 
and (15), is used to determine the collective FPR elements: 

 }pr = ∑ ($� ( x#�pr) − $� (x − 1#�pr)) }pr���(m)m∈���  (65) 
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where �pr = {x ∣ }prm  is defined}, �pr:�pr → �pr is a permutation function 
aimed at reordering the values of �pr so that }pr���(m) ≥ }pr���(m′) for any x < x′ 
with x, x′ ∈ �pr and $�: [0,1] → [0,1] is the membership function of the 
selected linguistic quantifier. 

After having aggregated individual preferences, it could happen that some 
values of the collective FPR P still remain undefined. In fact when none of 
the assessor students has expressed a preference between the i-th and j-th 
submissions for some v, w ∈ {1,… , c}, then the corresponding values }pr and }rp of the collective FPR can’t be calculated. In most cases it does suffice to 
estimate missing values according to equations (22)-(23) or equation (28) as 
described in section 1.7. 

For c µ \ and when many students skip the assessment task for one or 
more submissions, some elements of P may still remain undefined. Such 
ignorance situation can be solved through seed-based approaches as described 
in section 1.7. For example it is possible to assume indifference for any 
undefined value by setting it to 0.5. Then, estimators defined by equations 
(22)-(23) or by equation (28) can be applied again to make seed values as 
consistent as possible to the other FPR values. 

Example 19. Let |2 and |3 be individual FPRs generated from the fuzzy 
ranking @2 = (´1 ≥ ´6 ≈ ´5 ≥ ´3) and @3 = (´4 > ´1 ≥ ´5 > ´6) as follows: 

|2 = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.50 − 0.65 − 0.58 0.58− − − − − −0.35 − 0.50 − 0.43 0.43− − − − − −0.43 − 0.58 − 0.50 0.500.43 − 0.58 − 0.50 0.50⎠⎟⎟⎟⎟

⎟⎟⎟⎞, 

|3 = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.50 − − 0.35 0.58 0.73− − − − − −− − − − − −0.65 − − 0.50 0.73 0.880.43 − − 0.28 0.50 0.650.28 − − 0.13 0.35 0.50⎠⎟⎟⎟⎟

⎟⎟⎟⎞; 
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the collective FPR obtained by aggregating them with |1 (from Example 18) 
through equation (65) initialized with the increasing proportional linguistic 
quantifier most (see Figure 4), is shown below: 

| = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.50 − 0.65 0.35 0.58 0.64− 0.50 − 0.15 0.50 0.650.35 − 0.50 − 0.43 0.430.65 0.85 − 0.50 0.78 0.930.43 0.50 0.58 0.20 0.50 0.610.34 0.35 0.58 0.05 0.36 0.50⎠⎟⎟⎟⎟

⎟⎟⎟⎞. 
Then missing values are estimated on the collective FPR through equations 
(22)-(23) to complete it as follows: 

| = ⎝⎜⎜⎜⎜
⎜⎜⎜⎛0.50 0.59 0.65 0.35 0.58 0.640.41 0.50 0.65 0.15 0.50 0.650.35 0.35 0.50 0.11 0.43 0.430.65 0.85 0.89 0.50 0.78 0.930.43 0.50 0.58 0.20 0.50 0.610.34 0.35 0.58 0.05 0.36 0.50⎠⎟⎟⎟⎟

⎟⎟⎟⎞ 

Once all values of the collective FPR have been defined, it is possible to 
calculate the degree of preference �(´p) for each ´p ∈ D according to one of 
the measures defined in section 1.6 (i.e. NF, NDD, QGDD or QGNDD). The 
global ranking between the alternatives is then computed by ordering all the 
submission decreasingly on their preference degree. In alternative, one of the 
methods described in section 2.4 can be applied to directly obtain the global 
fuzzy ranking of all submissions from the collective FPR. 

Starting from the preference degrees it is possible to calculate the cardinal 
grade of each submission, provided that a cardinal assessment is made by a 
reliable expert (e.g. the teacher) to the best and the worst submissions (i.e. 
the first and the last in the final ranking). Let ¿kpl and ¿ká+ be the grades 
assigned to the best and the worst submissions, the estimated grade ¿p for 
every ´p ∈ D can be obtained via normalization as follows: 
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 ¿p = (�(´p) − �kpl) ⋅ (¿ká+ − ¿kpl)(�ká+ − �kpl) + ¿kpl (66) 

where �kpl and �ká+ are the degrees of preference associated to the best and 
the worst submissions. 

Example 20. From the collective FPR P resulting from Example 20, it is 
possible to obtain the preference degree of each submission in terms of Net 
Flow through equation (18) as follows: ��� (´1) = 0.63; ��� (´2) = −0.28; ��� (´3) = −1.68; ��� (´4) = 3.23; ��� (´5) = −0.33; ��� (´6) = −1.58. The 
collective fuzzy ranking of submissions can be then obtained through equations 
(36)-(37) as follows:  ´4 µ ´1 > ´2 ≈ ´5 > ´6 ≈ ´3. 

By applying equation (18) on obtained preference degrees with ¿kpl = 2 
and ¿ká+ = 9 (supposed to be assigned by an expert assessor), the following 
grades can be estimated: ¿1 = 5.3; ¿2 = 4; ¿3 = 2; ¿4 = 9; ¿5 = 3.9; ¿6 = 2.2. 





Chapter 5 

Applications to Recommender 
Systems 

This chapter proposes the application of the GDM models and techniques 
defined in the first part of this thesis in the domain of Recommender Systems 
(RSs). In recent years RSs have become increasingly popular to handle the 
information overload problem. They are currently adopted in a variety of 
areas including movies, music, news, books, research articles, search queries, 
social tags, and products in general. Although the majority of RSs provides 
recommendations for individual users, there are several activities that can be 
performed by groups of people, like watching a movie, going to a restaurant 
or traveling with friends. In such cases, recommendations should by targeted 
to groups rather than individuals and the preferences of any (or the majority 
of) group members must be taken into account together.  

Group Recommender Systems (GRSs) are RSs targeting groups of users. 
In addition to the previous cases, they can also play an important role in 
Ambient Intelligence, supporting applications that sense the environment and 
respond to the presence of people with personalized content. As most physical 
environments are used by many people at the same time, once their profiles 
are inferred or retrieved (e.g. via sensors, smart devices, RFID systems, etc.) 
GRSs can be used to select the most feasible content meeting all preferences. 
Example include the selection of the products to advertise on digital signage 
or the background music to be played in physical stores to maximize the well-
being of present customers with a view to increasing sales. 

The majority of existing GRS approaches are based on the aggregation 
of either the preferences or the recommendations generated for individual 
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group members. Nevertheless, in many contexts, the personality of group 
members, their influence and mutual relationships play an important role in 
the final decision adopted by the group. So, such social elements, should be 
taken into account in the recommendation process to provide better results.  

This chapter, after having summarized the main existing approaches to 
RS and GRS and the main metrics to measure their performances, introduces 
a novel influence-based approach to group recommendations based on the 
fuzzy GDM models and techniques defined in the first part. 

5.1 Recommendation Algorithms 
A formal definition of the recommendation problem can be expressed in these 
terms: let 3 = {�1,… , �k} be a set of users, ( = {#, … , #l} a set of items 
that can be recommended, R a totally ordered set whose values represent the 
utility of an item for a user (e.g. integers between 1 and 5 or real numbers 
between 0 and 1) and Þ: 3 × ( → @ a utility function measuring how an 
item # ∈ ( is useful for an user � ∈ 3 ; the purpose of a RS is to recommend, 
to each user u, the item #∗ that maximizes the utility function so that [94]: 

 #∗ = argmax+∈, Þ(�, #) (67) 

The central problem of RSs is that f is not completely defined over the 
space 3 × ( in fact, in typical applications, a user never expresses 
preferences on each available item. A RS shall then be able to estimate the 
values of the utility function also in the space of data where it is not defined, 
extrapolating from the points of 3 × ( where it is known. In other words, 
the goal is to predict the rating that an user would give to an unknown item. 

The techniques, by which it is possible to predict unknown ratings, are a 
fundamental aspect of RSs. In content-based approaches [95], the utility Þ(�, #) of an unknown item x for the user u is predicted by considering defined 
values of f for items that are considered similar to x. For example, in an 
application for movies recommendation, the RS would try to understand the 
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similarities between the movies that the user has positively rated in the past 
and those currently available (e.g. same genre, same director, common actors, 
etc.). After that, only items with high similarity would be proposed. 

In such applications, each item # ∈ ( is associated with a profile, i.e. a 
set of attributes able to characterize the content, that is represented by a 
vector }(#) = (�+,1,… , �+,m) where �+,p with v ∈ {1, … , x} is the weight of 
the i-th attribute or an indication of how the i-th attribute is able to 
characterize the item x. Weights can be either automatically generated (e.g. 
the frequency of keywords in text-based items) or manually provided (e.g. 
the presence or absence of a specific tag associated with the item). 

Each user � ∈ 3 is also associated with a profile }(�) = (�â,1,… , �â,m) 
where each weight �â,p with v ∈ {1,… , x} denotes the importance of the i-th 
attribute for the user u. The user profile is based on the attributes of the 
items preferred by the user in the past. In the simplest formulation it can be 
obtained by averaging all profiles of the items for which u has expressed a 
rating and weighting them on the basis of the rating itself.  

Once the profiles that characterize items and users have been defined, the 
utility of an unrated item x for an user u is calculated basing on the similarity 
between the two profiles. In other words Þ(�, #) = ´v\(}(�), }(#)). Several 
similarity measures can be used for this purpose. One of the most common is 
the cosine similarity that calculates the cosine of the angle between the two 
vectors as follows: 

 ´v\(}(�), }(#)) = ∑ �â,p�+,pmp=1√∑ �â,p2mp=1 ⋅ √∑ �â,p2mp=1  (68) 

The main advantage of this approach is that recommendations are only 
based on information related to domain items: first useful recommendations 
are so made immediately, with only one assessment available. On the other 
hand it tends to over-specialize predictions, therefore making them obvious 
and, consequently, uninteresting. 
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In collaborative approaches [96], unknown ratings are estimated from 
those made available by other users. The basic idea is that users who have 
evaluated the same items in a similar way, are likely to have the same tastes. 
User-based algorithms predict the utility Þ(�, #) of an unrated item x for the 
user u by aggregating the utility expressed for x by similar users. One of the 
simplest aggregation functions is the average of ratings given by similar users, 
weighted on the degree of similarity as follows: 

 Þ(�, #) = ∑ Þ(�′, #) ⋅ ´v\(�, �′)â′∈ã�∑ |´v\(�, �′)|â′∈ã�  (69) 

where 3m ⊆ 3  is the set of the k users considered most similar to u (with k 
chosen between 1 and the total number m of users). 

The similarity among users is calculated on the vectors (�â,+1 ,… , �â,+æ) 
that represent the ratings defined by an user � ∈ 3 where �â,+ = Þ(�, #), if 
defined, and # ∈ (. Several similarity measures exist to calculate such user 
similarity. Among them, one of the most commonly used is the Pearson’s 
correlation coefficient defined as follows: 

 ´v\(�, �′) = ∑ (�â,+ − �̅)+∈, (�â′,+ − �′̅̅̅ ̅̅ ̅)√∑ (�â,+ − �̅)+∈, 2 ⋅ √∑ (�â′,+ − �′̅̅̅ ̅̅ ̅)+∈, 2 (70) 

where �̅ and �′̅̅̅ ̅̅ ̅ represent the mean rating assigned by users u and �′. 
The advantage of computing recommendations basing on user similarity 

is to provide less obvious advice with respect to content-based approaches. 
On the other hand, when users provide few ratings, it is difficult to correlate 
them leading to inaccurate recommendations. Item-based algorithms [97] try 
to address this problem by estimating the utility of an unrated item x by 
aggregating the utility expressed by u to similar items. A simple aggregation 
function can be obtained by modifying equation (69) as follows: 
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 Þ(�, #) = ∑ Þ(�, #′) ⋅ ´v\(#, #′)+′∈,�∑ |´v\(#, #′)|+′∈,�  (71) 

where (m ⊆ ( is the set of the k items considered most similar to x (with k 
chosen between 1 and the total number n of items). 

The similarity between two items is computed using the aforementioned 
similarity measures (68), (70) on the vectors (�â1,+,… , �âç,+) that represent 
the ratings defined by the system users for the item # ∈ ( i.e. �â,+ = Þ(�, #), 
if defined, and � ∈ 3 . This approach is capable of providing fairly accurate 
recommendations also to users who have rated only few items. 

Collaborative approaches suffer of a normalization issue due to the fact 
that each user adopts its own personal scale to provide ratings. This lead to 
inaccurate results when ratings provided by different users are compared 
without normalization. The most popular normalization schemes are [98]: 
• mean-centering – the mean rating provided by an user (or for an item in 

item-based approaches) is subtracted to each rating before calculating 
similarities between users (or items in item-based approaches); 

• z-score – mean centered ratings are divided by the standard deviation of 
user ratings (or item ratings in item based approaches) before calculating 
similarities. 
In model-based approaches [99] the history of the RS in not directly 

used to make predictions but to learn a model that is then used to generate 
recommendations. Popular implementations rely on matrix factorization 
[100], that map users and items to a latent factor space of dimensionality ª ¾ \, c. Each item # ∈ ( is then associated with a vector è+ ∈ @é and each 
user � ∈ 3 with a vector }â ∈ @é. The elements of è+ measure the extent to 
which the item x possesses latent factors while the elements of }â the extent 
of interest the user u has in items that are high on the corresponding factors. 

The dot product between è+ and }â captures the interaction between the 
user u and the item x representing the user’s overall interest in the item’s 
characteristics. The utility function can be so obtained as Þ(�, #) = è+Ñ }â. 
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The main challenge of this approach is to compute the mapping of each item 
and user to the latent factors. A common approach is to minimize the error 
on the set of known ratings as follows [101, 102]: 

 minê,ë ∑ (Þ(�, #) − è+Ñ }â)2 + ì(‖è+‖2 + ‖}â‖2)(â,+)∈î  (72) 

where ï is the set of pairs (�, #) so that Þ(�, #) is known (i.e. items that have 
been explicitly rated by users) and the constant ì controls the regularization 
extent and is usually determined by cross-validation. 

Latent factor models combine good scalability with predictive accuracy. 
In addition, they are well suited to modeling temporal effects, which can 
significantly improve accuracy. In real applications, in fact, items perception 
and popularity constantly change as new selections emerge and, similarly, 
users’ inclinations evolve, leading them to redefine their taste.  

5.2 Measuring Recommendation Performances 
RSs have several properties that may affect user experience and, connected 
to them, there are different metrics aimed at measuring RS performance with 
respect to each property. Among RS properties, the accuracy is one of the 
most discussed in RS literature. It may take different forms according to the 
way it is measured. The rating prediction accuracy measures the ability of 
the system to correctly predict unknown user ratings. In such cases RMSE 
and MAE metrics, already discussed in section 4.4 are commonly applied 
between predicted utilities and assigned ratings [103]. 

Nevertheless, in many applications, the final aim of a RS is the generation 
of useful recommendations rather than the ratings prediction. In these cases, 
the RS ends up with a list of recommended items for any user and measures 
for usage prediction accuracy can be applied to determine how correctly such 
lists predict how users will select available items in the future. In particular, 
each recommendation is capable of producing four different outcomes: 
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• true positive i.e. a recommended item is selected; 
• false positive i.e. a recommended item is not selected; 
• true negative i.e. a non-recommended item is not selected; 
• false negative i.e. a non-recommended item is selected. 

By counting the number of items that fall into each category it is possible 
to compute the following measures: 

 }�a©v´voc = #i}#i} + #Þ} ;   �a©ztt = #i}#i} + #Þc (73) 

where #i}, #Þ} and #Þc are, respectively, the number of true positives, false 
positives and false negatives. Longer recommendation lists typically improves 
recall reducing precision and vice-versa. For this reason, when possible, it is 
useful to compute curves comparing precision to recall with different lengths 
of the recommendation lists. A measure that summarizes precision and recall 
in a single value is the F-measure defined as follows [104]: 

 ð = 2 ⋅ }�a©v´voc ⋅ �a©ztt}�a©v´voc + �a©ztt (74) 

Sometimes an RS ends-up with a ranked list of recommendations for each 
user rather than with a flat list. In such cases ranking prediction accuracy 
measures can be used. When true rankings of all available items are known, 
rank correlation measures such as Kendall’s ¨  or Spearman’s «, introduced 
in section 2.1, are applicable. In the more realistic case that true rankings are 
available just for some items, alternative measures must be used.  

The normalized rank score (NRS) metric, defined in [105], extends usage 
prediction accuracy metrics taking into account the position of recommended 
items. In particular, a decreasing utility is associated to the position in the 
item rank basing on the assumption that later positions have a higher chance 
of being overlooked. Given an user � ∈ 3 the rank score can be defined as: 
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 @Dâ = ∑ 12ñálm(+)−1:+∈¡ê   (75) 

where tp is the set of true positives (i.e. recommended items that are actually 
selected by the user), �zcx(#) is the position of x in the recommendation list, 8 is parameter setting the half-life of utilities i.e. so that a successful hit at 
the first position has twice as much utility than one at the 8 + 1 rank. 

NRS normalizes RS by the maximum achievable score if all selected items 
are assigned to the lowest position in the recommendation list. Let fn be the 
set of false negatives, the NRS for an user � ∈ 3 can be defined as: 

 ò@Dâ = @Dâ@Dâká+   where  @Dâká+ = ∑ 12p−1: .|¡ê∪ól|
p=1  (76) 

The normalized discounted cumulative gain (NDCG) is a similar measure 
where positions are discounted logarithmically [106]. Let (â = (#1â,… , #mâ) be 
a recommendation list generated for an user � ∈ 3 , the discounted cumulative 
gain of such list can be defined as: 

 �Ýgâ = ∑ Þ(�, #pâ)log2(v + 1)m
p=1   (77) 

where Þ(�, #pâ) is the real utility i.e. the true rating provided by the user u 
for the item #pâ. NDCG normalizes DCG by the maximum achievable score 
i.e. considering ò�Ýgâ = �Ýgâ �Ýgâká+⁄  where �Ýgâká+ is the value that 
DCG can get by ordering recommended items according to the true ratings. 

The calculation of NDCG relies on the assumption that true ratings are 
available for any recommended item. However in most cases users express a 
rating only for some items of the recommendation list. To overcome this 
issue, in [107] it was suggested to compute NDCG just on the subset of ranked 
items included in the recommendation list, sorted according to the ranking 
computed by the recommendation algorithm.  
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The prediction accuracy of a RS usually improves when the amount of 
available data increases. Nevertheless, in many cases, recommendations can 
be generated only on a portion of available data about items and users. The 
coverage of a RS measure the size of this portion. In particular, the catalog 
coverage is the percentage of available items which are recommended to some 
user i.e. the size of the union of all the recommendation lists divided by the 
number of available items. The more general prediction coverage represents 
instead the percentage of available items for which a recommendation can be 
generated. Similarly, the user-space coverage is the percentage of users for 
which a recommendation can be generated [108]. 

Often, the recommendation lists generated by a RS contains many similar 
items making them of limited value for users. In fact, in such cases, it may 
take longer to explore the full range of recommendations. To measure the 
ability of a RS to avoid this issue, some measures of diversity have been 
proposed [109]. Among them, one of the most used is the average distance 
between item pairs. Let (â = (#1â,… , #mâ) be the recommendation list for an 
user � ∈ 3 , its diversity measure can be obtained as: 

 ªvôa�´vi=â = 1 − 2 ⋅ ∑ ∑ ´v\ (}(#pâ),}(#râ))mr=p+1m−1p=1 c ⋅ (c − 1)  (78) 

where ´v\ (}(#pâ), }(#râ)) denotes a similarity metric defined in [0,1] (like the 
cosine similarity) applied on the profiles characterizing the content of items #pâ and #râ as described in section 5.1. 

RSs might generate recommendations with high accuracy and reasonable  
diversity and coverage but that are useless for practical purposes [108]. For 
example, it happens when an RS makes obvious recommendations involving 
popular items or items that users would have chosen even without them being 
recommended. Conversely, the most valuable recommendations involve items 
users have never heard of, but would love. To measure the attitude of a RS 
to generate surprisingly successful recommendations, serendipity metrics 
have been introduced [110].  
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Several measures of serendipity exist. In [111] it was suggested to obtain 
serendipity as linear composition of novelty and unpopularity. The novelty of 
an item # ∈ (, recommended to an user � ∈ 3 , is calculated as the distance 
between the profile representing x from that representing u. Using a similarity 
metric defined in [0,1] it can be so obtained as 1 − ´v\(}(�), }(#)). Instead, 
the unpopularity of x can be obtained as 1 − \+ \⁄  where m is the total 
number of users while \+ is the number of users who selected the item x in 
the past (or who gave it a positive rating). 

5.3 Group Recommendation Strategies 
Although the majority of RSs are designed to generate recommendations for 
individual users, in many circumstances the selected content is consumed in 
groups. Typical cases include the selection of movies or TV shows to be 
watched in a family context, the selection of restaurants, bars or cultural 
events for friends coming out together, the selection of holiday destinations 
for travel groups, etc. In such cases, provided recommendations should fit the 
preferences of any (or the majority of) group members [112]. 

Several group recommendation strategies have been proposed so far by 
different researchers. In [113], they have been classified in two broad classes 
depending on the stage in which information about individual group members 
is aggregated to obtain suggestions for the whole group. Recommendations 
aggregation strategies foresee the generation of individual recommendations 
for group members through a standard algorithm as those seen in section 5.1. 
Then, the individual lists of recommended items are merged into a single list 
addressing the group as a whole. Different algorithms have been proposed to 
perform the aggregation step and to decide whether to include or exclude 
individual suggestions in the group list. 

Preferences aggregation strategies, instead, combine users’ preferences (in 
terms of profiles or assigned ratings) in a single model that is used to obtain 
recommendations for the group through a standard algorithm. In this way 
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the group is seen as a pseudo-user reflecting the interests of all members. 
Compared to recommendations aggregation, these strategies increase the 
chance of finding unexpected, surprising items. On the other hand, group 
recommendations cannot be directly linked to individual preferences, which 
may be disorienting and makes them difficult to explain [114].  

In GRSs, a central role is played by the algorithm employed to aggregate 
recommendations or preferences (according to the selected strategy). In [112, 
115] several aggregation methods have been proposed as summarized below. 

The average method, in case of recommendations aggregation, merges 
the individual recommendation lists provided by a standard recommendation 
algorithm by calculating, for each item belonging to at least one of these lists, 
the average utility among all group members. Let 3� ⊆ 3  be the set of users 
belonging to a group and (� ⊆ ( the set including all items recommended 
to at least one member, the group utility of any # ∈ (� is estimated as: 

 Þ(3�, #) = ∑ Þ(�, #)â∈ãõ#3�  (79) 

The elements of (� with highest utilities are then proposed to the group. 
In case of preferences aggregation, instead, the average method uses equation 
(79) to estimate the group utility of any # ∈ (. Then, the items of X with 
the highest utilities are proposed to the group. When some group members 
have more influence on the group decision, a weighted average may be used. 

The average without misery method looks for the optimal decision for 
the group, without making some members really unhappy with such decision. 
In case of recommendations aggregation, any element # ∈ (� so that Þ(�, #) 
is below a given threshold for at least one user � ∈ 3�, is removed from (� 
or receives a penalty in the calculation of the group utility value. Similarly, 
in case of preferences aggregation, any item # ∈ ( whose utility is below a 
given threshold for at least one group member, receives a penalty.  

Like for the average method, equation (79) is used to aggregate remaining 
elements of (� or X. Penalties can be applied by multiplying the obtained 
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group utility to a penalizing factor between 0 and 1 or by using the minimum 
individual utility in place of the group utility. 

The least misery method aims at minimizing the overall misery of the 
group by considering the minimum individual utility as the group utility for 
each available item. Conversely, the specular most pleasure method aims 
at maximizing the overall pleasure of the group by considering the maximum 
individual utility as the group utility. Within both methods, in case of 
recommendations aggregation, the estimation is done only for items in (� 
while, in case of preferences aggregation, any item # ∈ ( is considered.  

The multiplicative method obtains the group utility of any item # ∈ ( 
by multiplying together the individual estimated utilities Þ(�, #) of x for any 
group member � ∈ 3�: 

 Þ(3�, #) = ∏ Þ(�, #)â∈ãõ  (80) 

In case of recommendations aggregation, the estimation is done only for items 
in (� while, in case of preferences aggregation, any item # ∈ ( is considered.  

The most respected person method adopts the recommendations made 
for the most influencing member as the group preferences. This method needs 
to know the influence level of group members. 

In [112] an experiment was made to identify how users perceive group 
recommendations obtained with different aggregation strategies. Participants 
were given individual ratings for sample items and users as well as item 
sequences chosen by the aggregation strategies. They rated how satisfied they 
thought group members would be with generated sequences, and explained 
their ratings. According to participants, the multiplicative method performed 
best followed by average, average without misery and most pleasure. 

When recommending items to groups of users, it is impossible to equally 
satisfy each member at all times. On the other hand, it is important that no 
one remains dissatisfied too many times. This leads to the need of balancing 
user satisfaction over time. In [116] several satisfaction function have been 
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proposed to model members’ satisfaction during multiple interactions with a 
group recommender system. Let #(1),… , #(m) ∈ ( be the sequence of the last 
k proposed items for the group of users 3�, the current satisfaction ´zi(�) of 
an user � ∈� can be defined as follows: 
• addition – summing the utilities of the last k selected items for the user 

u i.e. ´zi(�) = ∑ Þ(�, #(¡))m¡=1 ; 
• addition with normalization – dividing the sum of the utilities of the last 

k selected items by the sum of the utilities of the top l preferred items for 
u in X;  

• addition with decay – summing the utilities of the last k selected items 
weighted according to a decay function to give more importance to last 
selected items i.e. ´zi(�) = ∑ a1−¡ ⋅ Þ(�, #(¡))m¡=1  
When the satisfaction of each group member has been estimated through 

one of the previous methods, the preference aggregation function may use 
these values to improve recommendations. For example the item which is 
most liked by the least satisfied user can be proposed to the group or the top 
k preferred items for the least l satisfied users can be pre-selected in (� and 
a recommendations aggregation strategy can be applied on (� to generate 
the final suggestions. 

5.4 A GDM Model for Group Recommendation 
The group recommendation problem, as formalized in section 5.3, can be seen 
as a special case of the GDM problem. In GDM, a group of experts evaluate 
a set of alternatives with the aim of selecting the best one to adopt. To this 
end, each expert expresses her preferences on alternatives, preferences are 
aggregated, a collective preference degree of each alternative is calculated 
and a ranking over alternatives is generated. 

Similarly, the aim of GRSs, is to select from a given catalogue the item 
or the set of items that fit the preferences of all (or the majority of) members 
belonging to a group of users. Differently from GDM, users do not need to 
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explicitly state their preferences on items but an utility function, estimating 
such preferences, is already available as output of a standard RS algorithm. 
As in GDM, user preferences must be aggregated, the collective preference 
degree of each item calculated and a ranking over items generated. 

Let (â be the recommendation list built for an user � ∈ 3 by a standard 
RS algorithm as those described in section 5.1, 3� ⊆ 3 a group of users and (� = ⋃ (ââ∈�  the set of items recommended to at least one group member. 
By considering 3� as a set of experts and (� as a set of alternatives, we can 
translate the GRS problem in a GDM one. Then, the estimated utility Þ(�, #), with # ∈ (� and � ∈ 3�, naturally represents experts’ preferences. 

In some implementations, the RS only provides, for each user, the list of 
suggested items without specifying their utilities. In other implementations 
only the utility of suggested items is known. Instead, to instantiate a GDM 
problem corresponding to a GRS one, the underling RS should be able to also 
estimate the utility of a non-recommended item. This is needed to estimate 
preferences users have for items recommended to other group members. In 
other words, values for Þ(�, #) must be generated for any # ∈ (� and for 
any � ∈ 3�. Just in case of limited coverage i.e. when, due to limited data, 
it is impossible to estimate some utility values, the corresponding preferences 
of the GDM problem remain undefined. 

It is important to consider that GDM problems, instantiated in this way, 
found the decision process on predicted utility values rather than on explicit 
preference statements collected among experts. This suggests to rely on GDM 
approaches that are intrinsically able to deal with the uncertainty resulting 
from prediction inaccuracy, like those based on the fuzzy set theory. As seen 
in section 1.4, such approaches foresee preference modeling in terms of FPRs 
whose elements must be defined starting from predicted utilities. 

Given an utility function Þ : 3� × (� → [0,1], estimated by a standard 
RS, with 3� = {�1�,… , �k� } ⊆ 3  and (� = {#1�,… , #l�} ⊆ (, the 
corresponding FPR |m = (}prm ), representing preferences of each group 
member �m� ∈ 3�, must be defined. According to [2], utility values 
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function : [0,1] × [0,1] → [0,1] so that the following conditions are satisfied: 
• (�p,�r) is a non-decreasing function of the first argument and a non-

increasing function of the second one ∀ v, w ∈ {1, … , c}; 
• (�p, �p) = 0.5 ∀ v ∈ {1,… , c}; 
• (�p, 0) = 1 ∀ v ∈ {1, … , c} to reflect the fact that, if the utility of an 

alternative is zero, then any other alternative should be preferred to it 
with the maximum preference degree; 

• (�p,�r) > 0.5 iif �p > �r ∀v, w ∈ {1,… , c}; 
• (�p,�r) + (�r,�p) = 1 ∀v, w ∈ {1,… , c} that is the additive reciprocity 

property described in section 1.4. 
Several utility-to-FPR transformation functions exist. Among them, in 

[2], the following function that build FPRs satisfying the additive transitivity 
property too (as defined in section 1.4) has been proposed: 

 (�p,�r) = 1 + �p − �r2 . (81) 

Applying equation (81) on the utility function f, it is possible to obtain the 
elements of the FPRs |m with x ∈ {1,… , \}, associated to any group member 
as follows: 

 }prm = 1 + Þ(�m�,#p�) − Þ(�m�, #r�)2 . (82) 

Example 21. Let 3� = {�123,�335,�467} be the subset of RS users belonging 
to a given group G; (123 = {#12,#25, #39, #77}, (335 = {#12,#46, #67, #77} (467 = {#39, #46,#77, #89} the recommendation lists built for 3� members by 
a standard RS; (� = (123 ∪ (335 ∪ (467 = {#12,#25, #39, #46, #67,#77, #89} 
the set of items recommended to at least one group member. By assuming 
that the individual utilities for items in (� are those summarized in Table 
11 (where – represents an undefined prediction), it is possible to build the 
FPR associated to �123 according to equation (82) as follows: 
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|123 =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.50 0.55 0.50 0.75 0.90 0.60 −0.45 0.50 0.45 0.70 0.85 0.55 −0.50 0.55 0.50 0.75 0.90 0.60 −0.25 0.30 0.25 0.50 0.65 0.35 −0.10 0.15 0.10 0.35 0.50 0.20 −0.40 0.45 0.40 0.65 0.80 0.50 −− − − − − − −⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞. 

 

Group members 
Individual item utilities #12 #25 #39 #46 #67 #77 #89 �123 1.00 0.90 1.00 0.50 0.20 0.80 − �335 0.90 0.30 0.60 1.00 0.90 1.00 0.10 �467 0.10 0.30 0.90 0.80 − 0.80 1.00 

Table 11. Individual item utilities used in Example 21 

Given that, in the example, the RS is unable to predict the utility of #89 for 
the user �123, the values corresponding to the last row and column of |123 
remain undefined and should be estimated with one of the methods proposed 
in section 1.7. For example, assuming the indifference between #89 and any 
other item and iterating equations (22)-(23) until convergence, the following 
complete version of |123 is obtained: 

|123 =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.50 0.55 0.50 0.75 0.90 0.60 0.610.45 0.50 0.45 0.70 0.85 0.55 0.570.50 0.55 0.50 0.75 0.90 0.60 0.610.25 0.30 0.25 0.50 0.65 0.35 0.400.10 0.15 0.10 0.35 0.50 0.20 0.270.40 0.45 0.40 0.65 0.80 0.50 0.530.39 0.43 0.39 0.60 0.73 0.47 0.50⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞. 

When all individual FPRs |m with x ∈ {1, … , \} are obtained, they must 
be aggregated to obtain the collective FPR P through one of the functions 
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defined in section 1.5, like n�!�. Then, it is possible to calculate the group 
preference �(#p�) for each item #p� ∈ (� according to one of the measures 
defined in section 1.6 (i.e. NF, NDD, QGDD or QGNDD). The global ranking 
between the items is then computed by ordering them decreasingly on their 
group preference degree and the top-ranked elements can be recommended 
to the group. In addition, if needed, an estimation of the group utility of each 
item # ∈ (� can be obtained through normalization as follows: 

 Þ(3�, #) = (�(#) − �kpl) ⋅ (Þká+ − Þkpl)(�ká+ − �kpl) + Þkpl (83) 

where �kpl and �ká+ are, respectively, the minimum and maximum values 
of the group preference �(#p�) for v ∈ {1,… , c}, while Þkpl and Þká+ are the 
minimum and maximum of the utility function Þ(�m�, #p�) for x ∈ {1,… , \} 
and v ∈ {1,… , c}. 
Example 22. Let 3�, (� and |123 be as reported in the previous example 
and individual utilities of the (� items as summarized in Table 11, by using 
equation (82) to obtain the FPRs |335 and |467, equations (22)-(23) to 
complete |467 and equations (13)-(15) to aggregate FPRs with n� !� guided 
by the linguistic quantifier “much”, the following collective FPR is obtained: 

| =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.50 0.58 0.42 0.45 0.55 0.40 0.520.42 0.50 0.33 0.37 0.47 0.32 0.440.58 0.67 0.50 0.53 0.62 0.48 0.600.55 0.63 0.47 0.50 0.59 0.45 0.580.45 0.53 0.38 0.41 0.50 0.36 0.510.60 0.68 0.52 0.55 0.64 0.50 0.630.48 0.56 0.40 0.42 0.49 0.37 0.50⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞. 

Then, it is possible to obtain the group preference of each item in terms of 
QGDD through equation (20) and, in turn, their group utility with equation 
(83) as follows: Þ(3�, #12) = 0.51; Þ(3�,#25) = 0.10; Þ(3�, #39) = 0.91; Þ(3�,#46) = 0.76; Þ(3�, #67) = 0.31; Þ(3�, #77) = 1; Þ(3�, #89) = 0.37. The 
top-ranked items for group consumption so are: #77, #39 and #46. 
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An important aspect to take into account in the FPR aggregation process 
is the choice of the linguistic quantifier guiding the n�!� operator. While 
the selection of the quantifier “much” (like in Example 22) assigns the same 
importance to all individual utilities, by selecting a different quantifier it is 
possible to obtain a different behavior. For example, by using the “at least 
half” quantifier, it is expected that at least half of group users is satisfied 
with an item to recommend it. To this end, higher individual utilities are 
privileged with respect to lower ones. Conversely by using the “as many as 
possible” quantifier, it is expected that the majority of users is satisfied with 
an item so lower individual utilities are privileged over higher ones. By using 
the “most” quantifier, instead, lower-intermediate utilities are privileged over 
extreme (higher or lower) ones. 

Example 23. Let 3� = {�1�,�2�, �3�, �4�} be the set of users belonging to a 
group G and (� = {#1�,#2�, #3�, #4�} the set of items recommended to at least 
one group member. Let assume that the estimated individual utility for each 
group member is that reported in Table 12, by using the defined GDM model 
to compute recommendations for the whole group we obtain different results 
according to the linguistic quantifier chosen for the n�!� operator during 
the FPR aggregation process. Table 13 summarizes the results obtained using 
different linguistic quantifiers and compare them with those obtained with 
standard group recommendations aggregators as seen in section 5.3. 
As it can be seen in Table 13, by averaging individual utilities (through the 
“average” aggregator) all items seem equally relevant to the group. The 
“average without misery” aggregator has a similar behavior but it excludes 
items #1� and #4� because their utility is too low for some users (�1� and �2�). 
The “least misery” and “most pleasure” aggregators use, in turn, the lower 
and the higher individual utility of each item while, the “multiplication” 
aggregator, privileges lower individual utilities over higher ones. 
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Group members 
Individual item utilities #1� #2� #3� #4� �1� 1.00 0.60 0.80 0.20 �2� 0.60 0.60 0.80 0.20 �3� 0.50 0.60 0.40 1.00 �4� 0.30 0.60 0.40 1.00 

Table 12. Individual item utilities used in Example 23 

Similarly, by adopting the defined GDM based model, different behaviors are 
obtained by choosing different quantifiers for the n�!� aggregator. Given 
that FPRs are built comparing, for each user, the individual utilities of 
different items, the GDM model operate on relative utilities rather than on 
absolute ones. To this end mean-centered individual utilities (where the mean 
is calculated with respect to each user) are reported in Table 14.  

 

Aggregators 
Ranked group utilities 

1st  2nd  3rd  4th  

average #1� (0.60) #2� (0.60) #3� (0.60) #4� (0.60) 

average without misery #2� (0.60) #3� (0.60) #1� (0.00) #4� (0.00) 

least misery #2� (0.60) #3� (0.40) #1� (0.30) #4� (0.20) 

most pleasure  #1� (1.00) #4� (1.00) #3� (0.80) #2� (0.60) 

multiplication #2� (0.13) #3� (0.10) #1� (0.09) #4� (0.04) 

at least half (GDM) #4� (1.00) #1� (0.35) #3� (0.35) #2� (0.20) 

much (GDM) #1� (0.50) #2� (0.50) #3� (0.50) #4� (0.50) 

most (GDM) #2� (1.00) #3� (0.65) #1� (0.25) #4� (0.20) 

as many as possible (GDM) #2� (1.00) #1� (0.85) #3� (0.85) #4� (0.20) 

Table 13. Ranked group utilities obtained using different aggregators 
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By considering again Table 13 in the light of the relative utilities shown in 
Table 14, it can be seen that the “much” quantifier in the GDM model behave 
like the “average” aggregator. The “at least half” quantifier, instead, 
privileges relative utilities associated to most enthusiastic users, so #4� wins 
thanks to its high estimated relative utility for users �3� and �4�. Conversely, 
the “as many as possible” quantifier privileges relative utilities associated to 
less enthusiastic users so #2� wins thanks to its high estimated relative utility 
for users �1� and �3�. Finally, the “most” quantifier privileges relative utilities 
associated to lower-intermediate users so, in this case, the winner is #2�. 

 

Group members 
Mean-centered individual utilities #1� #2� #3� #4� �1� 0,35 -0,05 0,15 -0,45 �2� 0,05 0,05 0,25 -0,35 �3� -0,12 -0,03 -0,22 0,38 �4� -0,27 0,03 -0,17 0,43 

Table 14. Mean-centered individual item utilities for group members 

The previous example demonstrates the flexibility of the proposed model. 
In fact, it allows to design different aggregation strategies by simply selecting 
different linguistic quantifiers. Moreover, when needed, a new strategy can 
be introduced by simply defining a new quantifier. 

5.5 Influence-Based Recommendations 
When selecting an item for consumption within a group of users, often the 
final choice is deeply affected by the personality of group members. In fact, 
due to interpersonal influence, individual preferences may change during the 
selection process when information and opinions are exchanged in social 
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interactions. In order to take social influence into account, we propose an 
improved GDM-based model for group recommendations that introduces 
social elements in accordance with the approach defined in chapter 3. 

In particular, as proposed in section 3.1, the configuration and strength 
of social influence among group members is evaluated basing on interpersonal 
trust and represented within a SIN. The SIN, in its turn, is used to complete 
the generated FPRs in case of missing elements (e.g. due to limited coverage 
of the underlying RS) and to evolve them by incorporating elements captured 
from other FPRs simulating, in this way, the effects of social influence on 
opinion change. The process then iterates until convergence toward a shared 
FPR that is then used to build recommendations. 

In analogy with the definition provided in section 3.1, a SIN represents a 
directed graph associating, to each pair of group members (�p�, �r�) ∈ 3�2 , a 
weight �pr ∈ [0,1] that measures the strength of the influence of the j-th 
member on the i-th one. SIN weights can be determined starting from explicit 
user-provided trust statements, like discussed in section 3.3, or inferred by 
analyzing past social interactions among group members e.g. by looking at 
implicit information contained in social networks like Facebook or Twitter. 
The main advantage of the second approach is that the process is completely 
transparent to users. On the other hand, it is required that all group members 
belong to the same social network but this issue is mitigated by the rising 
popularity of this kind of applications. 

In [117] it was demonstrated that trust and tie strength are conceptually 
different but strongly correlated. In [118], 74 Facebook variables have been 
identified as potential predictors of tie strength. By relying on these results, 
in [119] interpersonal trust has been estimated as linear combination of 10 
factors measured on Facebook profiles. Then, on the same paper, it has been 
demonstrated that a reliable estimation of trust strength can be obtained by 
just considering, for each �p�, �r� ∈ 3� with v ≠ w, the following 5 factors: 
• Þ1(�p�,�r�) represents the amount of common friends between �p� and �r�, 

ranging from 0.1 (less than 5) to 1 (more than 25); 
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• Þ2(�p�,�r�) is the percentage of pictures where �p� and �r� appear together 

over the total number of pictures in the �p� profile; 
• Þ3(�p�,�r�) is the duration of the relationship between �p� and �r� ranging 

from 0.1 (less than 1 year) to 1 (more than 10 years), obtained comparing 
information on age, schools, universities, work and family relations; 

• Þ4(�p�,�r�) is the percentage of common interests described in the profiles 
of �p� and �r� (movies, books, joined groups, etc.) over the total number 
of interests declared in the �p� profile; 

• Þ5(�p�,�r�) is the strength of the declared status between �p� and �r� 
ranging from 0.1 (barely know) to 1 (couple). 
The trust level of any group member �p� in any other member �r� can be 

then obtained as weighted sum of such factors as follows: 

 i��´i(�p�, �r�) = ∑ �mÞm(�p�,�r�)5
m=1  (84) 

where v ≠ w and the weights �m with x ∈ {1,… ,5} are chosen experimentally 
so that ∑ �m = 15m=1 . A feasible set of weights is: �1 = 0.4; �2 = �3 = 0.2; �4 = 0.15 and �5 = 0.05. 

Once the interpersonal trust among group members is estimated, to build 
a SIN, it is still needed to estimate users’ self-confidence. Such value measures 
the attitude of an user to remain faithful to her initial preferences, mitigating 
the effects of social influence. In [119], a similar attribute is estimated based 
on the Thomas-Kilmann Conflict Mode Instrument (TKI), a test made of 30 
questions with two possible answer each [120].  

TKI define five personality modes of dealing with conflicts: competing, 
collaborating, avoiding, accommodating and compromising. Depending on 
the answers provided to test questions, a score is assigned to each personality 
mode. Then, the obtained results are summarized along two basic dimensions: 
assertiveness and cooperativeness through a weighted sum of the obtained 
scores. Given the assertiveness z(�p�) and the cooperativeness ©(�p�) of an 
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user�p� ∈ 3�  obtained in this way and assuming that both values are defined 
in [0,1], the self-confidence of �p� can be obtained as follows: 

 ´atÞ(�p�) = 1 + z(�p�) − ©(�p�)2  (85) 

A problem of this approach is that it requires that group members fill a 
30-questions test before start using the system. Nevertheless, several studies 
[121, 122] correlate conflict management styles with the so-called five-factors 
personality traits (extraversion, agreeableness, conscientiousness, neuroticism 
and openness). Basing on these studies, if the personality traits are known, 
it is possible to estimate the levels of assertiveness and cooperativeness of a 
given user and, through equation (85), the ´atÞ-©ocÞvªac©a too. 

Several types of test exist to estimate such personality factors like the 
Five-Factor Personality Inventory or the Revised NEO Personality Inventory 
[123]. Unfortunately, such approaches suffer from the same limitations seen 
for the direct estimation of the conflict management styles i.e. users are 
needed to fill long questionnaires before system use. Nevertheless, some 
approaches exist to predict personality directly from the language used in 
social media. For example, in [124], an algorithm for the prediction of the 
five-factors traits from the textual analysis of users’ Facebook status updates 
is defined. Moreover, from a similar work [125], the on-line tool Apply Magic 
Sauce1 for personality prediction from Facebook has been implemented.  

Once ´atÞ(�p�) and i��´i(�p�,�r�) are estimated for v, w ∈ {1, … , \}, it is 
possible to obtain SIN weights as follows: 

 �pr = ⎩{⎨{
⎧(1 − ´atÞ(�p�)) ⋅ i��´i(�p�, �r�)∑ i��´i(�p�, �m�)m∈{1,…,k}∖p if v ≠ w, ´atÞ(�p�) if v = w. (86) 

                                         
1 https://applymagicsauce.com/ 
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The special case where i��´i(�p�,�r�) = 0 ∀ w ∈ {1,… , \} ∖ v (i.e. when an 
user does not trust any other user) is handled by setting �pp = 1 and �pr = 0 ∀ w ∈ {1,… , \} ∖ v. It is trivial to demonstrate that the so obtained matrix 
W fulfills the normalization property defined by equation (41). 

Example 24. Let 3� = {�123,�335,�467} be the subset of RS users belonging 
to a given group G and that i��´i(�123,�335) = 0.3; i��´i(�335,�123) = 0.8; i��´i(�123, �467) = 0.9; i��´i(�467,�123) = 0; i��´i(�335,�467) = 0.8 and that i��´i(�467,�335) = 0.8. Let also assume ´atÞ(�123) = 0.5; ´atÞ(�335) = 0.2 
and ´atÞ(�467) = 0.8, according to equation (86) it is possible to obtain the 
SIN represented by the following matrix: 

� = (0.5 0.12 0.380.4 0.2 0.40 0.2 0.8 ). 
The obtained SIN is used to complete the generated FPRs in case of 

missing elements. According to section 3.4, seed values for missing elements 
are obtained from FPRs of group members that are trusted by the one whose 
FPR has to be completed through equation (47). Then, the final estimates 
are computed through the iterative application of equations (22)-(23) until 
convergence is reached. 

To simulate the effects of social influence between group members, the 
individual FPRs obtained at the preceding steps are evolved using the SIN. 
According to section 3.5, an iterative process is applied where, at each step, 
the individual FPR of each group member is slightly changed to take into 
account the influence of trusted members through equation (49). When the 
stopping conditions defined by equation (50) are met, in case of lack of 
convergence, the obtained FPRs are aggregated through the n�!� operator 
as defined in section 1.5.  

Finally, the group preference �(#p�) for each item #p� ∈ (� is calculated 
as described in section 5.4 on the collective FPR, the global ranking between 
the items is computed and the top-ranked elements are recommended to the 
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group. Optionally, an estimation of the group utility of each item # ∈ (� 
can be obtained through equation (83). 

Example 25. Let 3� and (� be as defined in Example 21 and the individual 
utilities for items in (� as reported in Table 11, through equation (82) it is 
possible to build the FPR associated to each group member. By relying on 
the SIN adjacency matrix W defined in Example 24, it is then possible to 
estimate missing FPR elements with equation (47) followed by the iterative 
application of equations (22)-(23). The obtained FPR for user �123 ∈ 3� is 
reported below and should be compared to that obtained in Example 21 by 
applying the “indifference” estimation strategy. 

|123 =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.50 0.55 0.50 0.75 0.90 0.60 0.580.45 0.50 0.45 0.70 0.85 0.55 0.540.50 0.55 0.50 0.75 0.90 0.60 0.620.25 0.30 0.25 0.50 0.65 0.35 0.410.10 0.15 0.10 0.35 0.50 0.20 0.330.40 0.45 0.40 0.65 0.80 0.50 0.540.42 0.46 0.38 0.59 0.67 0.46 0.50⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞. 

Such FPR, together with those obtained for �335, �467 ∈ 3� (not reported for 
shortness) are then evolved according to the process described in section 3.5 
to simulate the effects of social interaction. After 6 iterations, all individual 
FPRs converge to the following FPR: 

| =
⎝⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎛

0.50 0.50 0.26 0.30 0.34 0.28 0.290.50 0.50 0.27 0.30 0.30 0.28 0.290.74 0.73 0.50 0.53 0.52 0.51 0.530.70 0.70 0.47 0.50 0.51 0.48 0.500.66 0.70 0.48 0.49 0.50 0.47 0.560.72 0.72 0.49 0.52 0.53 0.50 0.520.71 0.71 0.47 0.50 0.44 0.48 0.50⎠⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎞. 

Then, it is possible to obtain the group preference of items through equation 
(20) and, with equation (83), their group utility as follows: Þ(3�, #12) = 0.11; Þ(3�,#25) = 0.10; Þ(3�, #39) = 1.00; Þ(3�, #46) = 0.89; Þ(3�, #67) = 0.89; 
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 Þ(3�,#77) = 0.97; Þ(3�, #89) = 0.85. The top-ranked items for the group so 
are: #39 and #77 followed by #67 and #46.  
Compared with the results obtained in Example 22, we see that now #39 is 
preferred over #77 even if it has an higher average of individual utilities. This 
is because #39 is preferred by users �123 and �467 that, according to the SIN, 
are more influencing than �335 (who prefers #77 instead). It should also be 
noted the good position reached of #67 due to the fact that the opinion of the 
influencing member �467 (initially unknown) is formed on that of �335 (that 
likes #67) disregarding that of the untrusted member �123(that dislikes #67). 
5.6 Comparison with Related Works 
Several GRSs have been proposed in the literature. Among the first systems 
there is MusicFX [126] that selects background music to be played in a fitness 
center to suit the group of people expected to exercise at a given time. User 
profiles are generated with an interview and the music selection is based on 
a variant of the least misery aggregation strategy (seen in section 5.3) that 
includes some randomness to avoid always choosing the same music. Another 
GRS for the selection of ambient music is Flytrap [127] that generates user 
profiles starting from the music people listen to on their computers and uses 
RFID badges to detected people present in the room. 

Polylens [128] is a group extension of the popular Movielens system for 
movies recommendation2. It allows users to create groups and ask for group 
recommendations that are built by aggregating individual recommendations 
(generated basing on users’ star ratings) through the least misery strategy 
and avoiding movies already seen by any group member. In the field of TV 
shows, Yu’s TV [129] recommends television programs for families. It bases 
recommendations on the average strategy applied on individual preferences 
for program features (e.g. genre, directors, actors, etc.). Family Interactive 

                                         
2 https://movielens.org/ 
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TV [130] also filters television programs according to the viewers’ preferences 
and uses implicit relevance feedback assessed through the actual program the 
viewer has chosen for watching. 

In the touristic field, the Travel Decision Forum [131] assists a group to 
agree on the desired attributes of a planned joint holiday. Users indicate their 
preferences on a set of features (room facilities, sightseeing attractions in the 
surrounding area, etc.), preferences are then aggregated and a mediator agent 
supports users to reach consensus. The Collaborative Advisory Travel System 
[132] is a similar system that induces group members’ profiles by proposing 
holiday packages and collecting critiques on their features. 

The Pocket Restaurant Finder [133] delivers restaurant recommendations 
for groups that are planning to go out eating together. The application bases 
recommendations on individual preferences related to cuisine type, restaurant 
amenities, price category, etc. also taking into account the physical location 
of users and restaurants. Intrigue [134] is a GRS for touristic places which 
build recommendations by relying on a single group profile obtained from the 
characteristic of the group (e.g. presence of children or disabled) as well as 
from the aggregation of individual preferences. 

Beyond application-specific works, some studies evaluate the performance 
of different aggregation strategies for GRSs. A main issue of this task is that 
the majority of RS datasets just include single-user data. To overcome this 
limitation, in some works, like [107, 113], synthetic groups are generated on 
well-known dataset like Movielens. Unfortunately, being the true preferences 
of such groups unknown, the generated recommendations are compared with 
the individual ratings in the test set. Although calculating GRS performance 
in such way seems questionable, some useful result is obtained. In particular, 
the recommendations accuracy decreases as the group size increases and, the 
greater the similarity of group member profiles, the better the accuracy of 
recommendations. 

Some small-scale experiments have been also performed with real users. 
In [112] participants rated how satisfied they thought group members would 
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be with group recommendations generated according to different strategies. 
In such experiment, the multiplicative method performed best followed by 
average, average without misery and most pleasure. In [135], an experiment 
with real users was conducted to validate the results obtained with synthetic 
groups. One of the main conclusions of this study was that it is possible to 
realize trustworthy experiments with synthetic data, as the online user test 
confirmed the results of the offline experiment.  

The preceding works have in common that the group recommendations 
just take users’ individual preferences into account without considering either 
the user personality or the relationships among group members. Despite that 
in real contexts such aspects are crucial in the item selection process, systems 
dealing with them have been introduced only recently. For example, in [119] 
a 30-questions test is used to determine a value representing how selfish or 
cooperative an user is in conflict situations. Such value is used, in turn, to 
weight the preferences of group members during aggregation.  

With respect to relationships among group members, in [136] it has been 
pointed out that people tend to rely more on recommendations coming from 
people they trust than on anonymous ratings coming from similar users. 
According to [119], this is even more important when users have to decide on 
items to be consumed within a group. FilmTrust [137] is an example of trust-
aware RS, which builds a network of trust among users based on explicit 
feedback. Users are asked to provide a trust rating for each person they add 
as a friend. Then, unknown items for each user are rated according to the 
average rating of trusted friends weighted by the value of trust. Another 
example is Epinions3, an e-commerce site which maintains a network of trust 
by asking users to indicate which members they trust or distrust. If no direct 
connections from an user to any rater exist for a given item, trust propagation 
and aggregation metrics are used to estimate indirect trust values.  

                                         
3 http://www.epinions.com/ 
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A drawback of such personality and trust-based approaches is that they 
requires explicit feedback from users. To overcome this issue, a promising 
alternative is to build networks of trust from implicit information commonly 
shared on-line by users e.g. data contained in social networks. According to 
[138], the complete transparency of this process compensates the fact that 
the trust networks obtained in such way are less accurate than those obtained 
with explicit feedback. For example, in [119], interpersonal trust has been 
estimated as a combination of 10 factors measured on Facebook profiles and 
used within a GRS for movie recommendation named Happy Movie. 

As an evolution of the latter approaches, the novel GRS models proposed 
in this chapter combine interpersonal trust and personality concepts in that 
of social influence. This is motivated by the fact that items selection in a 
group usually follows an argumentation process, where each member defends 
her preferences and rebuts other’s opinions. In this process, interpersonal 
influence (that is dependent of both trust and personality) is a major factor 
affecting opinion change toward a common decision. Taking such factor into 
account allows to define a more accurate representation of the reality, leading 
to better recommendations. 

In particular, to introduce social influence in GRS, we propose a GDM 
based approach. In fact, while items selection for individual consumption can 
be considered as an interaction-free process, so manageable with standard RS 
techniques, when interaction is needed to find an agreement among different 
hypotheses, a GDM problem can be outlined and specific techniques taking 
social influence into account can be applied. In addition, given that group 
recommendations are generated starting from individual predictions made for 
group members (rather than from explicit preference statements), fuzzy-
based approaches, intrinsically able to deal with uncertainty and inaccuracy 
of such predictions, have been preferred. 

The application of GDM techniques to support GRS is a young research 
area. To the best of our knowledge few works exist in this area and are mainly 
related to consensus-reaching among group members. For example, in [139] 
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a collaborative approach is used to provide individual recommendations for 
a group of users and then, an automatic consensus model based on GDM is 
applied to update the preferences of the most discordant members making 
them as concordant as possible with average preferences. In [140] the same 
approach is applied to restaurant recommendations and takes into account 
geolocation too. With respect to such works, our approach applies a full GDM 
process that also deals with social aspects of influence, trust and personality. 

 
 
 
 



Chapter 6 

Experiments and Evaluation 

 
This chapter presents a set of studies and experiments aimed at measuring 
the performance of the original peer assessment methods defined in chapter 
4 in comparison with other existing methods. In particular, the results of two 
in-silico studies (made of several experiments with synthetic, realistic data), 
related to GMPA methods and FOPA, are reported and discussed.  

The results of three experiments with real students are also reported, one 
related to GMPA methods, one to FOPA and one involving both at the same 
time. Two of these experiments have been made at the University of Salerno 
and one at the Open University of Catalonia. In two experiments cardinal 
peer grades have been collected and, when needed, converted in ordinal ones 
while, in the last experiment, students were asked to directly provide fuzzy 
rankings as the output of the assessment task. The results of each experiment 
are discussed in a specific subsection. 

6.1 GMPA with Synthetic Data 
To evaluate the performance of the GMPA methods defined in section 4.5 
and compare them with existing methods, seven different experiments with 
synthetic data have been performed. In all experiments 100 students are 
supposed to have submitted a solution to an assignment composed of 10 
questions. For each correct answer a student gains 1 point and for each wrong 
answer she gains 0 points. The real grade of each student is then an integer 
belonging to the set [0,10]. 
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Each student has then to evaluate the submissions of m other peers. 
According to [79], we suppose that each student i with a real grade ¿¹̅̅̅ ̅̅ has 
probability ¿¹̅̅̅ ̅̅/10 of marking correctly each answer of a peer submission. So 
if the student i grades the submission of a student j (whose real grade is ¿¤̅̅̅ ̅̅), 
then the proposed grade ¿rp is a random variable so that: 

 ¿rp ~ B(¿¤̅̅̅ ̅̅, ¿¹̅̅̅ ̅̅10) + B (1 − ¿¤̅̅̅ ̅̅, 1 − ¿¹̅̅̅ ̅̅10 )  (87) 

where B(\,}) is a binomial distribution of m trials with probability p. 
Each experiment is made of several iterations. For each iteration, real 

grades are randomly assigned (with different probability distributions). Then, 
the assessment grid is built (according to different methods) and the grades 
matrix is randomly filled according to the probability distribution given in 
equation (87). The final grades are then calculated (according to different 
methods) and compared to real grades by calculating the RMSE as defined 
in section 4.4. The details and the results of each experiment are discussed 
in the next sub-sections. 

6.1.1 Binomial Distribution of Grades 

In the first experiment, real grades are assigned according to a binomial 
distribution: each student, for each of the 10 questions of her assignment, has 
a probability p of answering correctly and a probability 1 − } of answering 
wrongly. The real grade of a student i is so assigned according to: 

 ¿¹ ̅̅̅ ̅̅̅~ B(10, }).  (88) 

In each step a probability p is chosen and 1000 iterations are performed. 
For each iteration, real grades are assigned according to equation (88) with 
probability p. Then, a 100´100 assessment grid is randomly generated with 
equation (51) so that each student evaluates 4 other peers (\ = 4). A grades 
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matrix, including all proposed grades, is then randomly generated from the 
distribution given in equation (87).  

For each iteration, the final grade of each student is calculated in the 
following ways: 
• as the Average of grades proposed by peers with equation (52); 
• with the PeerRank rule described by equation (60); 
• with the F-PeerRank the rule described by equations (61)-(62) selecting 

the function Þ(#) = #2, named PowPeerRank hereinafter; 
• with the F-PeerRank the rule described by equations (61)-(62) selecting 

the function Þ(#) = a+, named ExpPeerRank hereinafter; 
• with the BestPeer rule described by equation (63) using ExpPeerRank to 

obtain a first estimation of student grades. 
For each iteration, the RMSE between final and real grades is calculated 

over all students and obtained values are mediated over all iterations. Figure 
14 plots the performance obtained applying the five methods to the defined 
marking model in terms of mean RMSE against the probability p used to 
generate real grades. It results that PeerRank and ExpPeerRank outperform 
Average for } > 0.6. The performance of all methods is quite similar when 0.5 ≤ } ≤ 0.6 while, for } < 0.5, the best method remains the Average.  

Obtained results show that all GMPA methods need } > 0.5 to get useful 
signal out of the data. It is worth noting that } = 0.5 means that students 
are answering (or marking) questions just as well by tossing a coin. So, in 
real contexts, assuming that } > 0.5 is not a restrictive constraint. Moreover, 
as it can be seen, PowPeerRank performs a little better than PeerRank while 
ExpPeerRank outperforms both. Instead, BestPeer is better than other 
methods only for } > 0.9.  

The best choice for this distribution of grades is so ExpPeerRank that 
ensures, in best cases, a decrease in RMSE of about 1 grade with respect to 
the baseline Average method. So, on average, each student will have a final 
grade closer to the real one of approximately 1 point over 10. 
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Figure 14. Performances or GMPA methods on a binomial distribution of 

grades with different values for p (probability of answering correctly). 

6.1.2 Uniform Distribution of Grades 

In the second experiment, the real grades are assigned according to a uniform 
distribution i.e. each student receives an integer random grade to the whole 
assignment from a minimum min to a maximum 10 where 0 ≤ \vc ≤ 10. 
Hence the real grade of a student i is assigned according to: 

 ¿¹ ̅̅̅ ̅̅̅~ U ({\vc,… , 10}) (89) 

where U(D) defines a discrete uniform distribution over the set S. 
Figure 15 plots the performance, in terms of mean RMSE against the 

minimum grade min, obtained by applying the same methods of the first 
experiment to the defined marking model with \ = 4. Also in this case 
ExpPeerRank outperform the other methods in almost all conditions while 
PowPeerRank is a little more performant than PeerRank. Only for \vc = 0 
the performance of all methods is quite the same.  
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It is interesting to note that BestPeer behaves better than in the previous 
experiment, with a RMSE lower or equal to PeerRank. The best performance 
is obtained when \vc ≤ 5 (high variance of real grades) and with \vc ≥ 8 
(high average real grade). This can be explained by the fact that, when there 
is a high variance in student levels, there is a high probability that a peer is 
evaluated also by unreliable graders and this affects the quality of the final 
grade in all methods (at different levels) apart from BestPeer where only the 
best grade is selected. This advantage disappears when min increases because 
in that case, proposed grades increase their average quality. 

  
Figure 15. Performance of GMPA methods on a uniform distribution of 

grades with different values for min (minimum grade). 

6.1.3 Binomial Distribution of Grades with Smart 
Assignment 

This experiment replicates the one of section 6.1.1 with the difference that 
the assessment grid is generated according to equation (64) rather than to 
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previous assessments (needed to generate the student ranking) is equal to the 
assigned real grade. This is a simplification that supposes that students 
maintain a constant performance across several assignments. Given that, the 
results of this experiment can be considered as an upper bound of the results 
obtainable with smart assignment in real contexts.  

Figure 16 plots the performance obtained applying the defined methods 
to the marking model with random (dashed lines) and smart (plain lines) 
assignment methods. Given that the performance of PowPeerRank is quite 
similar to that offered by the standard PeerRank method, we have removed 
this method from the figure to maintain an higher readability.  

 
Figure 16. Performance of GMPA methods on a binomial distribution of 

grades with different assignment methods (SA = Smart Assignment). 

As it can be seen, with a binomial distribution of real grades Average, 
PeerRank and ExpPeerRank are quite insensitive to the smart assignment. 
Instead, as it might be supposed, BestPeer has a substantial improvement 
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because the smart assignment ensures that each student is assessed by at 
least one good grader whose proposed grade is selected as the final one. 

6.1.4 Uniform Distribution of Grades with Smart 
Assignment 

This experiment replicates the one of section 6.1.2 with the difference that 
the assessment grid is generated according to equation (64) rather than to 
equation (51), with the same assumptions made in section 6.1.3 with respect 
to the average grade obtained in previous assessments. 

 
Figure 17. Performance of GMPA methods on a uniform distribution of 
grades with different assignment methods (SA = Smart Assignment). 

Figure 17 plots the performance obtained by applying the four methods 
(also in this case we exclude PowPeerRank whose performance is similar to 
the standard PeerRank) to the defined marking model with random (dashed 
lines) and smart (plain lines) assignment methods in case of uniform 
distribution of real grades. In this case, while Average and PeerRank result 
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again quite insensitive to smart assignment, ExpPeerRank and (to a greater 
extent) BestPeer, show a good improvement.  

In particular, BestPeer outperforms all the other methods, especially in 
configurations with high grades variance (\vc < 5) and high average real 
grade (\vc > 6). Only for \vc < 1 its performance is comparable than that 
of other methods. Hence in this case, the best choice seems to be BestPeer, 
whose performance in contexts that present a high variance of student levels, 
is boosted by the smart assignment.  

6.1.5 Binomial Distribution of Grades and Variable 
Number of Assessors per Student 

The number m of submissions that each student has to evaluate is one of the 
main parameters that must be defined to setup a peer grading session. On 
one hand, such number must be kept as small as possible to avoid overloading 
the students, with the risk that they do not respond adequately to the 
exercise providing rough, partial or void estimations. On the other hand, this 
number corresponds to the number of assessors for each submission. Taking 
this into consideration, m should be kept as big as possible to have sufficient 
information to estimate the final grades. 

To determine how the selection of m impacts on the performance of the 
defined GMPA methods, we have performed another experiment where the 
real grades are assigned according to a binomial distribution with probability } = 0.7 (a reasonable value in real contexts). In each step, the number m of 
assessors for each student is chosen from 1 to 12 and 1000 iterations are 
performed. For each iteration, real grades are assigned, then an assessment 
grid is generated with smart assignment according to equation (64). A grades 
matrix, including all proposed grades, is then randomly generated from the 
distribution given in equation (87). 

Figure 18 plots the performance obtained by applying the five methods 
to the defined marking model in terms of mean RMSE against the number 
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of assessors m. As expected, the error decreases when the number of assessor 
increases but the decrease is smoother as m increases.  

 
Figure 18. Performance of GMPA methods on a binomial distribution of 

grades with different number of assessors for student. 

With Average, PeerRank and PowPeerRank algorithms, the increase in 
performance after the 4th assessor is negligible. ExpPeerRank offers good 
improvement until the 6th assessor while BestPeer has sensible improvements 
until the 10th assessor. Moreover, this latter becomes more performant of 
both PeerRank and PowPeerRank starting from the 12th assessor.  

This fact can be explained by considering that the number of assignments 
evaluated by the best graders increase when more assessors are added. The 
impact on rules other than BestPeer is limited given that the resulting grades 
are obtained by considering also grades proposed by other assessors while the 
most positive impact is on BestPeer that only considers the grade assigned 
by the best grader. 
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6.1.6 Uniform Distribution of Grades and Variable 

Number of Assessors per Student 

This experiment replicates the previous one but the real grades are assigned 
according to a uniform distribution and each student receives an integer 
random grade to the whole assignment from a minimum of 6 to a maximum 
of 10 i.e. \vc = 6 in equation (89). Figure 19 plots the performance obtained 
by applying the defined GMPA methods to the defined marking model (with 
smart assignment) in terms of mean RMSE against the number m of assessors 
per student.  

 
Figure 19. Performance of GMPA methods on a uniform distribution of 

grades with different number of assessors for student. 

As in the previous case, the error decreases when the number of assessors 
increases and the decrease is smoother as m increases. It should be noted that 
BestPeer outperforms the other methods for \ ≥ 4. Moreover, for BestPeer, 
the RMSE asymptotically goes to 0 when the number of assessors increase. 
This is due to the same reasons already explained in the previous section and 
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the effect is more evident with uniform distribution of real grades thanks to 
the high average level of the simulated class that results in a high number of 
reliable graders. 

6.1.7 BestPeer and Support Methods 

As described in section 4.5, the BestPeer method calculates the final grade 
for any student with one of the other methods, then assigns to each student 
the grade coming from the assessor with the best final grade. In the previous 
experiments ExpPeerRank has been used as support method for BestPeer. In 
this last experiment we wonder if ExpPeerRank is the best possible choice, 
at least in the configuration of the experiment made in section 6.1.2. 

We have so repeated the same experiment only with BestPeer, adopting 
different support methods. Obtained results are shown in Figure 20 against 
the standard Average method. As it might be supposed, ExpPeerRank (that 
is the method with the best performance in the majority of configurations) 
represents the best choice.  

 
Figure 20. Performance of Best Peer with different support methods on a 

uniform distribution of grades with different values for m. 
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6.2 GMPA with Real Data 
To evaluate the effectiveness of the GMPA methods defined in section 4.5 
also with real users, we have applied them on peer grading data coming from 
an on-line course held in Spring 2014 at the Open University of Catalonia 
(UOC) [141]. The on-line course had 58 students enrolled and was divided in 
7 subsequent modules. After having completed the study of a module, each 
student received an invitation to answer three open questions. When the 
answers were collected, each student had to access each classmates’ answers 
and evaluate it according to a 5-point scale (A, B, C+, C-, D) before starting 
the subsequent module. 

The peer grading core component was developed in Java and integrated 
in the UOC learning management system. It integrates two external Web 
applications: Google Forms4 to collect the answers to module questions and 
Lime Survey5 to let students evaluate peers’ answers to module questions. To 
exchange data between the two tools a Comma Separated Value exchange 
model has been adopted and the Super CSV6 package has been selected to 
deal with such format in Java. 

Table 15 shows the statistics collected for each module. As it can be seen, 
the number of active students per module (students providing answers to 
module questions) has decreased about 70% over time: from 41 in module 1 
to 12 in module 7 (on a total of 58 enrolled students). Despite it may seem 
discouraging, this result is in line with the problematic drop-out rate suffered 
by on-line courses (the mean drop-out ratio at UOC is about 50%).  

Moreover, only a part of the active students have also executed the peer 
grading task. The second row of Table 15 reports on the number of students 
that, for each module, succeeded in evaluating (at least some of) their peers. 

                                         
4 https://docs.google.com/forms/ 
5 https://www.limesurvey.org/ 
6 http://super-csv.github.io/super-csv/ 
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The remaining rows of the table report the mean grade obtained by students 
for each question of each module normalized between 0 and 10. If we consider 
that the three questions are graded separately, data for 3 × 7 = 21 separate 
assignments is available.  

 
Modules 1 2 3 4 5 6 7 

Active students 41 28 23 20 21 18 12 

Peer Assessors 30 24 15 14 16 11 11 

Mean grade (question 1) 7.3 8.0 7.5 7.3 7.8 7.5 7.5 

Mean grade (question 2) 7.0 7.3 7.5 7.5 7.3 7.5 7.3 

Mean grade (question 3) 7.5 7.8 7.3 7.8 7.3 7.8 7.5 

Table 15. Main statistics of the performed experiment 

In the experiment, students were asked to grade all peers. Conversely, in 
a MOOC peer grading setting, students would be asked to evaluate only a 
small subset of other students. In the absence of an assessment made by an 
expert tutor, this peculiarity allows us to calculate the approximate real grade ¿¹̅̅̅ ̅̅ of a student i as the mean grade obtained by her over the whole population 
of assessors. According to [75], we have assumed that the mean of many 
student grades tend towards the correct real grade, especially for the first 
two modules where each submission were graded by 30 (for module 1) and 
24 (for module 2) peer assessors. 

Starting from this data we have then performed two different experiments 
as detailed in the next subsections. Once the assignment is selected among 
the 21 available, each experiment is made of several iterations. Given an 
assignment, for each iteration we have supposed that just m grades were 
proposed (randomly selected among those available) for each active student. 
This allow us to simulate the real conditions of a MOOC peer grading task. 
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So, for each iteration, the assessment grid is built by randomly selecting 
m assessors for each active student and the grades matrix is filled with grades 
proposed by that students. Final grades are then calculated (with different 
GMPA methods) and compared to the approximate real grade (obtained as 
previously described) by calculating the RMSE. 

The purpose of the experiments is to determine which of the defined 
methods can estimate with better accuracy the approximate real grade 
(obtained by averaging all available evaluations) using only a small number 
m of randomly selected evaluations per submission. Considering that the 
approximate real grade is, in turn, an estimation of the real grade, we are 
indirectly finding the best estimator of the real grade. 

6.2.1 Fixed number of peer assessors 

This experiment is made of 7 steps (one for each module) and 21 sub-steps 
(corresponding to the three questions for each module). For each sub-step, 
1000 iterations are performed. In each iteration, 4 assessors are randomly 
selected for each submission (i. e. \ = 4) and both the assessment grid and 
the grades matrix are filled as previously explained. The dimension of these 
matrices is equal to the number of active students in the related module 
(from 41´41 in the first step to 12´12 in the seventh).  

For each iteration, the final grade of each student is calculated as the 
Average of grades proposed by peers with equation (52); with the PeerRank 
rule described by equation (60); with the F-PeerRank the rule described by 
equations (61)-(62) selecting the functions Þ(#) = #2 (PowPeerRank) and Þ(#) = a+ (ExpPeerRank); with the BestPeer rule described by equation (63) 
using ExpPeerRank to obtain a first estimation of student grades. The RMSE 
between final and approximate real grades is calculated for each iteration 
over the active students.  

Table 16 summarizes the performance obtained by the defined methods 
on the experimental data. The reported RMSE values are mediated over all 
iterations for each sub-step and over all stub-steps for each step. As it can 
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be seen both PeerRank and PowPeerRank outperform the Average method 
in all conditions. They show a better accuracy in predicting the approximate 
real grade even with a small number of available evaluations for each student. 
Conversely, ExpPeerRank and BestPeer performances are worst. 

 
Module 

RMSE per method 
Average PeerRank PowPeerRank ExpPeerRank BestPeer 

1 1.00 0.96 0.94 1.40 2.13 
2 0.87 0.82 0.81 1.16 1.87 
3 0.88 0.83 0.82 1.13 1.82 
4 0.82 0.77 0.77 1.01 1.80 
5 0.81 0.76 0.75 1.02 1.74 
6 0.80 0.76 0.75 1.07 1.87 
7 0.65 0.61 0.61 0.77 1.49 

Mean 0.83 0.79 0.78 1.08 1.81 

Table 16. Performance obtained on experimental data 

This result can be explained by the fact that, with both ExpPeerRank 
and BestPeer, the final grade of each student is extremely influenced by the 
grade proposed by one grader: the most reliable. This moves the final grade 
away from the approximate real grade obtained by mediating all available 
evaluations. In particular, BestPeer suffers from an approximation issue too. 
Indeed, by just considering the grade proposed by the best grader, the final 
grade results in an integer from 1 to 5 (a point from the 5-point scale) 
normalized in the interval [0,10].  

It should be noted that, when the total number of active student 
decreases (as the progressive module number increases), the performance of 
all methods improves. This behaviour is explained by the fact that the 
number of evaluations used for prediction is fixed (i.e. \ = 4) while the total 
number of evaluations (used to calculate the approximate real grade) 
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decreases. Therefore, the ratio of available data over the whole set increases, 
resulting in better performance. 

6.2.2 Variable number of peer assessors 

In this experiment the attention is focused just on one assignment (i.e. the 
first question of the first module) but the number m of assessors for each 
submission is increased from a minimum of 2 to a maximum of 10. In each 
step, the number m of assessors for each student is chosen in this range and 
1000 iterations are performed. For each iteration the assessment grid and the 
grades matrix have been generated as in the previous experiment and the 
final grades are calculated according to the defined methods. 

 
Figure 21. Performance of GMPA methods on experimental data with 

different number of assessors for student. 

Figure 21 shows the performance obtained by the five methods in terms 
of mean RMSE against the number of assessors m. As in experiments 
reported in sections 6.1.5 and 0 (executed on synthetic data), the error 
decreases when the number of assessor increases and the decrease is smoother 

Number of assessors per student
2 3 4 5 6 7 8 9 10

RM
SE

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Average
PeerRank
PowPeerRank
ExpPeerRank
BestPeer



Experiments and Evaluation 159 

as m increases. An exception is BestPeer that has uniform performance 
regardless of the selected number of assessors. This can be explained through 
the same approximation issue pointed out in the preceding sub-section. 
As it can be seen, both the PeerRank and PowPeerRank methods show better 
performance with respect to the average aggregation rule. Indeed, the 
performance gap between these methods decreases with the increase of the 
number of assessors i.e. when the quantity of information available becomes 
closer to information used to calculate the approximate real grade. It should 
be noted that the comparison against approximated real grades obtained by 
averaging a large number of peer grades (rather than against teachers’ 
provided grades) obviously advantages the Average aggregation rule. Taking 
this into consideration, the performance achieved by GMPA methods in such 
experiment can be considered as a lower bound to the performance obtainable 
in contexts where also teachers’ grades are available. 

6.3 FOPA with Synthetic Data 
To demonstrate the effectiveness of FOPA and to compare it with different 
approaches, we have performed several experiments with synthetic data. In 
all the experiments, 100 students are supposed to have submitted a solution 
to a given assignment. The submission of each student ´p has a real grade ¿¹̅̅̅ ̅̅ 
belonging to [0, 10] assigned according to a normal distribution ¿¹ ̅̅̅ ̅̅ ̅̅ ~ ÷(6, 2) 
centered in 6 with a standard deviation of 2. 

Each student has then to evaluate the submissions of m peers (with m 
constant or variable according to the specific experiment) matching a random 
assessment grid ! = (zpr) defined as specified by equation (51). Students are 
imperfect graders so, according to [75], we have modelled such imperfection 
with two parameters:  
• a bias term { ≥ 0 that reflects a tendency of an assessor student to either 

inflate or deflate her assessment (i.e. high biases describe lenient assessors 
while low biases describe stringent ones); 
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• an unreliability term � ≥ 0 that reflects how far, on average, a grader’s 

assessment tends to land with respect to the corresponding true grade 
(i.e. a low unreliability describes a proper attitude to distinguish between 
good and bad submissions).  
Basing on these two parameters, the perceived grade ¿pr of a student ´p 

from the assessor student ́ r, is defined according to the following probability 
distributions:  

 ¿pr ~ ÷(¿¹̅̅̅ ̅̅ + {r, �) so that {r ~ ÷(0, {).  (90) 

The fuzzy ranking @r is then defined for each assessor student ́ r ∈ D through 
equations (36)-(37) by setting �(´p) = ¿pr for each ´p ∈ Dr. 

Starting from synthetic data generated in this way, the global ranking 
and the absolute grades have been estimated for each submission according 
to the model defined in section 4.6 and compared to real grades (and related 
rankings). This has allowed us to measure FOPA performances in revealing 
the ground truth also in presence of noisy data (taking into account different 
values for bias and reliability) and in comparisons to existing ordinal and 
cardinal peer assessment methods (described in sections 4). The details and 
the results of such experiments are discussed in the next sub-sections. 

6.3.1 Optimal Parameters Setting 

This experiment is aimed at discovering the best settings for the parameters 
used by FOPA. This is done by measuring the performance obtained in 
reconstructing the global ranking of submissions both in case of perfect 
grading (i.e. when students make no errors when assessing other students) 
that in the more realistic case of imperfect one. The results obtained with 
different settings are then compared to discover the most promising settings 
to be used in next experiments. 

The first parameter to set is the ranking measure to adopt for quantifying 
the degree of preference of each submission among those defined in section 
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1.6 i.e. the one that offers the best performance for the specific problem. 
Moreover, according to section 1.5, the aggregation of preferences based on 
OWA can be done starting from several linguistic quantifiers like much, at 
least half, most and as many as possible. Another parameter to set is so the 
quantifier to apply. 

To identify which setting offers the best performances, we have executed 
the experiment described so far with 100 students and 4 assignments to be 
evaluated by each (so \ = 4). When generating perceived grades, we have 
set { = 0 and u ranging from 0 (perfect grading) to 3 (average difference of 3 
between the real grades and the perceived ones). For each value assigned to 
u we have repeated the experiment 1000 times and mediated the obtained 
results in terms of PCRPR as defined by equation (57). Then, we have 
repeated the process by setting � = 0 and b ranging from 0 (no bias at all) 
to 3 (average bias of 3).  

 
Figure 22. Performances of the QGDD, QGNDD, and NF ranking 

measures compared with the Borda count in terms of PCRPR. 

Figure 22 shows the results in terms of PCRPR, obtained by FOPA, 
changing the applied ranking measure among Quantifier Guided Dominance 
Degree (QGDD), Quantifier Guided Non-Dominance Degree (QGNDD) and 
Net Flow (NF), against the unreliability rate u (on the left) and the bias rate 
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(on the right). The figure shows that, among the available measures, two 
obtain the best performances with any value of u and b: QGDD and NF. In 
case of perfect grading (i.e. when � = { = 0), they show a PCRPR of 95.7%, 
that is far beyond the 84.5% obtained by the Borda count.  

Both measures demonstrate a fair robustness to unreliability but, the 
improvement with respect to the Borda count, decreases when u increases. 
Moreover, it should be noted that all the methods are very robust with 
respect to the bias with average variations of less than 1% in terms of PCRPC 
for each increase of 1 grade in bias. Nevertheless, this is a common advantage 
of ordinal grading methods.  
On the other hand, FOPA results to be insensitive with respect to the 
selection of the OWA quantifier for the aggregation step: the same results 
are in fact obtained regardless of the adopted one. The same level of 
insensitivity has been also detected by changing the fuzzy quantifier adopted 
within the QGDD and QGNDD measures. For this reason, the results 
obtained changing the quantifier are not shown in the figure. 

6.3.2 Comparison with other Ordinal Peer Assessment 
Methods 

This experiment is aimed at comparing the performance of FOPA with that 
of the other methods for ordinal peer assessment described in section 4.3 in 
case of perfect and imperfect grading. To do that, we have executed the same 
experiment described so far with 100 students and 4 assignments to be 
evaluated by each. When generating perceived grades, we have set { = 0 and 
u ranging from 0 to 3. For each value assigned to u we have repeated the 
experiment 1000 times and mediated the obtained results in terms of 
PCRPR, calculated according to equation (57).  

Then, for each iteration and experimented method, the obtained scores 
have been transformed in grades through the equation (66), setting ¿kpl and ¿ká+ equal, respectively, to the minimum and the maximum real grade. Then 
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the RMSE between the grades estimated through each experimented method 
and the real grades have been calculated according to equation (55). 

Figure 23 (on the left) shows the results in terms of PCRPR, obtained 
by FOPA (adopting the Net Flow aggregation measure) compared with the 
models of Mallows (MAL), Bradley-Terry (BT), Plackett-Luce (PL) and 
Borda. An additional model named Score-Weighted Mallows (MALS) defined 
in [81] as an improved version of the Mallows model has been also tested. 
The same figure (on the right) plots the results in terms of RMSE of the 
same models after having transformed the scores in grades as described so 
far. To experiment the methods described in [81], we have used a software 
tool named PeerGrader7 made publicly available by the authors. 

 
Figure 23. Performances of FOPA against MAL, MALS, BT and PL in 

terms of PCRPR and RMSE. 

Among the introduced methods, MALS, BT and PL show similar PCRPR 
values while PL performs a little better than the other two in terms of RMSE, 
at least with � < 1.5. The performance of MAL are worst and comparable 
with those of Borda in terms of PCRPR while, with respect to RMSE, MAL 

                                         
7 www.peergrading.org 
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reaches a higher error rate even with small unreliability rates. Nevertheless, 
it should be noted that, as explained in [81], MAL (as Borda) is not conceived 
for obtaining cardinal grades and this is the reason why the authors have 
improved MAL defining MALS.  
The plots show that FOPA outperforms the other methods both in terms of 
PCRPS that in terms of RMSE. When considering PCRPC, FOPA gains 
about 4% against MALS, BT and PL in case of perfect grading (from 92.4% 
to 95.7%) but the improvement decreases when u increases until about 2% 
for � = 3 (from 73.2% to 74.6%). When considering RMSE, FOPA is able to 
lower the mean error of about 0.2 grades in case of perfect grading (from 0.82 
of PL to 0.65 of FOPA) while this difference tends to nullify when increasing 
the unreliability until � = 3. 

6.3.3 Comparison with Cardinal Peer Assessment 

This experiment is aimed at measuring the performances of FOPA (and some 
other ordinal approaches) in comparison to cardinal peer assessment where 
the grade ¿pr proposed by an assessor student ´r ∈ D for a student ´p ∈ Dr is 
set equal to the perceived grade defined by equation (90) and the final grade 
of each student is obtained by averaging all the grades obtained by peers 
according to equation (52). 

To compare FOPA and CPA we have executed the same experiment 
described so far with 100 students and 4 assignments to be evaluated by each. 
When generating perceived grades, we have considered both b and u ranging 
from 0 to 3. For each setting, we have repeated the experiment 1000 times 
and mediated the obtained results in terms of RMSE, calculated according 
to equation (55). 

Figure 24 shows the results in terms of RMSE, obtained by FOPA (with 
Net Flow), by the Plackett-Luce method (PL), by Borda and by Cardinal 
Peer Assessment (CPA) while ranging the bias rate from 0 to 3. The plot on 
the left considers that assessor students are perfectly reliable (� = 0) while 
the plot on the right considers a moderate level of unreliability (� = 1). As 
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it can be seen, CPA is very sensitive to the bias rate compared with ordinal 
approaches. In both cases CPA introduces a lower error with respect to 
FOPA until the bias rate reaches a given threshold, variable according to the 
unreliability rate (about 1.4 for � = 0, 1.7 for � = 1). After the threshold, the 
gap in term of RMSE between CPA and FOPA increases until a difference 
of about 0.60 for � = 0 and { = 3 and about 0.43 for � = 1 and { = 3. It is 
worth noting that, in all cases, FOPA outperforms the other ordinal methods. 

 
Figure 24. Performances of FOPA, PL and Borda against CPA in terms of 

RMSE (lower is better) when u=0 (left) and u=1 (right) 

To provide a comprehensive view of the behavior of FOPA and CPA, 
Figure 25 shows the three-dimensional surfaces of the RMSE curves obtained 
ranging u and b from 0 to 3. Clearly the error level in FOPA mainly depends 
on the unreliability rate, while the error in CPA quite evenly depends on the 
unreliability and the bias rates. With medium-low bias and medium-high 
unreliability, CPA is a little better than FOPA. Conversely, with medium-
high bias and medium-low unreliability, FOPA is quite better than CPA. 

It is worth noting that CPA requires, by each assessor student, an amount 
of information significantly higher with respect to ordinal approaches. Given 
this complexity, as shown in section 4.2, in real contexts cardinal feedback is 
less reliable with respect to the ordinal one, even when assessors are at the 
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same level of knowledge and experience. In light of this, the performed 
experiment ultimately benefits CPA because it assumes, for each iteration, 
the same level of bias and unreliability between cardinal and ordinal 
feedback. Nevertheless, the performances obtained by FOPA are comparable 
and in some cases better than those obtained by CPA. 

 
Figure 25. Performances of FOPA and CPA in terms of RMSE (lower is 

better) ranging both the bias and unreliability rates 

6.3.4 Selection of the Number of Assessors 

The number m of submissions that each student has to evaluate is one of the 
main parameters that must be defined to setup a peer assessment session. On 
one hand, this number should be kept as small as possible to avoid 
overloading the students, with the risk that they do not respond adequately 
to the exercise providing rough, partial or void estimations. On the other 
hand, according to the definition of assessment grid provided in section 4.3, 
this number corresponds to the number of assessors for each submission. In 
this respect, m should be kept as big as possible to have sufficient information 
to estimate the final ranking and grades.  
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To determine how the selection of m impacts on the performance of 
FOPA, we have executed the same experiment described so far with 20 and 
200 students and a number of assignments to be evaluated by each student 
variable from 2 to 20. When generating perceived grades, we have set { = 0 
(the previous experiments have shown that FOPA is insensitive to the bias) 
and u variable from 0 (perfect grading) to 3. For each setting we have 
repeated the experiment 1000 times and mediated the obtained results in 
terms of RMSE, calculated according to equation (55). 

Figure 26 (left) plots the results obtained by FOPA (with Net Flow) with 
20 students and m ranging from 2 to 20. A first thing to observe is that, 
while for high unreliability rates (� ≥ 2) an increase of m always determines 
a decrease of the whole error level, for low unreliability rates (� < 2) an 
increase of m determines a decrease of the RMSE only until a given threshold. 
After the threshold, adding more assessors, results in an increase in the 
RMSE. This can be explained by the fact that, while using ranking strings 
for assessing the submissions, a noise is introduced in the model (in fact, 
ranking strings can be seen as approximated FPRs). Such noise increases 
when the strings length increases (so when m increases) but it is balanced by 
the additional information obtained with more assessors.  

 
Figure 26. Performances of FOPA in terms of RMSE with different values 

for u, ranging m from 2 to 20, with n=20 (left) and n=200 (right) 
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In the (unrealistic) case of perfect grading (when � = 0), all assessors 
have exactly the same perception of the student grades so, after a given 
threshold, adding more assessors does not increase the quantity of available 
information until the extreme case of \ = c, when all the assessor students 
provide exactly the same ranking string. So in these cases the noise 
introduced by ranking string approximation remains unbalanced and the 
error increases. This is evenly true in settings with low unreliability rates 
(� < 2) and with more students to evaluate (Figure 26, right) even if the 
threshold becomes higher and higher. 

With respect to the selection of m, it should be noted that, apart the 
unrealistic case where � = 0, the curves plotted on the left and on the right 
side of Figure 26 have a similar trend. Regardless of the number of students 
and of the unreliability rate u, we notice a steep decrease of the RMSE while 
moving from two to three assessors and a smoother decrease for subsequent 
values of m. By looking at the right part of the figures we see that, when � = 1, the RMSE start to increase for \ > 16 while, even for � > 1, the 
decrease in RMSE obtained adding a new assessor is less than 0.02. Such 
reflections suggest to select a number m of submissions to be assessed per 
student so that 3 ≤ \ ≤ 16 regardless of the total number of students 
involved and on the expected degree of unreliability and bias. 

6.4 FOPA with Real Data 
To evaluate the performance of FOPA and other peer assessment methods 
discussed in sections 4.2 and 4.6 in another context, we have experimented 
them within a course on Computer Skills for Education of a M.S. degree in 
Pedagogical Sciences at the University of Salerno. The experiment was aimed 
at measuring at what extent each model is able to estimate the grade assigned 
by the teacher to every student based on imprecise ordinal feedback provided 
by students themselves. In the next subsections, we describe the experimental 
setting and, then, we illustrate and analyse the collected data. 
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6.4.1 Experimental Setting 

The experimental set was composed by first year students taking part in a 
20 hours course on Computer Skills for Education aimed at developing basic 
competencies on computer architectures, computational thinking and coding. 
The course, that is part of a 5-year M.S. degree in Pedagogical Sciences, was 
held through traditional face-to-face lectures and exercises sessions.  

The formative evaluation experiment was performed in two sessions, held 
in two different days of the same week, with 25 voluntary students. In the 
first session students have been asked to complete and submit a coding 
exercise while in the second session students have been asked to assess the 
submissions coming from a subset of their peers by providing a fuzzy ranking.  

The peer grading task was performed in a blind mode in order that 
students do not know whom they are assessing. The same submissions have 
been also assessed by the course teacher to build the ground truth with which 
to compare the results coming from experimented peer assessment models. 

6.4.2 Data Collection 

A total of 11 students over 25 completed the first session by submitting a 
solution to the proposed exercise while the remaining 14 were not able to 
complete the task. For this reason, during the second session students were 
divided in two groups: the first including those that submitted their solution 
and the second including the remaining ones. Students of the first group 
(being considered more proficient) were asked to evaluate 5 submissions (over 
the 11 available) while students of the second group were asked to only 
evaluate 3 submissions.  

To assign the submissions to assessors, two random assessment grids have 
been generated: the first 11×11 grid involved students from the first group 
both as assessors and as assessees while the second 11×14 grid involved 
students from the first group as assessees and students from the second group 
as assessors. In both cases, equation (51) was applied. 
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Student Assessees Fuzzy Rankings True Grade (0-30) ´1 {´2,´4, ´7, ´9, ´11} ´4 ≥ ´11 ≥ ´9 ≈ ´7 ≈ ´2 18 ´2 {´3, ´5, ´6, ´8, ´10} ´3 ≥ ´10 ≈ ´5 µ ´8 ≈ ´6 10 ´3 {´1, ´4, ´6, ´9, ´11} ´4 µ ´11 ≥ ´9 ≥ ´1 ≥ ´6 24 ´4 {´1, ´3, ´5, ´8, ´10} ´10 ≥ ´3 > ´5 > ´1 > ´8 30 ´5 {´1, ´3, ´6, ´8, ´11} ´3 µ ´11 > ´8 > ´1 µ ´6 13 ´6 {´2,´4, ´7, ´9, ´11} − 18 ´7 {´1, ´2, ´4, ´6, ´9} ´4 µ ´9 > ´1 > ´6 ≥ ´2 10 ´8 {´2,´5, ´6, ´7, ´10} ´10 ≥ ´5 > ´2 ≥ ´7 ≈ ´6 11 ´9 {´3,´5, ´7, ´8, ´10} ´3 µ ´10 > ´8 ≥ ´5 ≈ ´7 18 ´10 {´2,´4, ´7, ´9, ´11} ´4 µ ´11 > ´9 > ´7 ≥ ´2 28 ´11 {´1, ´3, ´5, ´8, ´10} ´3 > ´10 µ ´8 ≈ ´1 ≈ ´5 26 ´12 {´4, ´9, ´11} ´4 µ ´9 ≥ ´11 − ´13 {´4, ´5, ´10} ´4 µ ´5 ≈ ´10 − ´14 {´1, ´5, ´11} − − ´15 {´2, ´6, ´7} ´7 µ ´2 ≈ ´6 − ´16 {´1, ´3, ´8} − − ´17 {´2,´7, ´11} ´11 µ ´7 > ´2 − ´18 {´2, ´5, ´10} ´10 µ ´2 ≥ ´5 − ´19 {´4, ´6, ´9} ´4 µ ´9 ≥ ´6 − ´20 {´3, ´8, ´10} − − ´21 {´4, ´8, ´9} − − ´22 {´3, ´5, ´10} − − ´23 {´2,´7, ´11} ´11 ≥ ´2 > ´7 − ´24 {´3, ´6, ´8} − − ´25 {´1, ´6, ´9} − − 

Table 17. Students’ proposed fuzzy rankings and teacher’s assigned grades 



Experiments and Evaluation 171 

Only 17 students over 25 completed the second session by providing a 
fuzzy ranking: 10 coming from the first group and 7 coming from the second 
one. All provided fuzzy rankings were complete i.e. all assigned submissions 
were covered by them. The 11 submissions were also evaluated by the teacher 
in the range [0,30]. The provided fuzzy rankings as well as teacher assigned 
grades (true grades) are summarized in Table 17. 

6.4.3 Evaluating Peer Assessment Models 

We have applied FOPA as well as the other ordinal peer assessment models 
described in section 4.2 on collected data to demonstrate the effectiveness of 
ordinal peer assessment in the estimation of student grades and to compare 
the results obtained by each model with respect to teacher assigned grades.  

The Table 18 shows, for each student, the true grade, the grade estimated 
by FOPA, those estimated by the models of Mallow (MAL), Score-Weighted 
Mallows (MALS), Bradley-Terry (BT) and Plackett-Luce (PL) as defined in 
[81], and the grade obtained using the Borda count defined by equation (54). 
Equation (66) is used to obtain cardinal grades from the scores associated to 
each submission.  

The performance of each model is measured both in terms of Correctly 
Recovered Pairwise Relations (PCRPR) and Root Mean Square Error 
(RMSE). With respect to PCRPR, as it can be seen in Table 18, all models 
rank the submissions in the same order reaching a 90% of similarity to the 
ranking made by considering teacher assigned grades. With respect to RMSE, 
the models behaviour ranges from a minimum error of 2.4, obtained by 
FOPA, to a maximum error of 2.9, obtained by Borda.  

According to such results, we can assert that ordinal peer assessment is 
a valuable approach to support formative evaluation and is capable of 
estimating quite accurately teacher assigned grades, at least in the considered 
sample. Only small differences can be appreciated with respect to the selected 
model. In particular, FOPA presents the minimum error but it slightly 
increases the mean grade of the class with respect to teacher assigned grades. 



172 Fuzzy Models for Group Decision Making and their Applications 
 
Instead, PL shows a slightly greater error rate but it maintains a greater 
fidelity with respect to the mean grade. 

 
Student True Grade FOPA MAL MALS BT PL Borda ´1 18.0 15.7 16.0 14.6 14.7 14.3 12.0 ´2 10.0 9.8 9.0 11.1 11.5 10.8 14.0 ´3 24.0 28.0 27.7 26.9 27.1 26.6 25.0 ´4 30.0 30.0 30.0 30.0 30.0 30.0 30.0 ´5 13.0 15.6 18.3 15.9 16.2 15.1 17.0 ´6 18.0 9.0 9.0 9.0 9.0 9.0 9.0 ´7 10.0 11.0 11.3 11.9 12.2 11.7 14.0 ´8 11.0 14.1 13.7 14.9 15.1 14.1 13.0 ´9 18.0 19.6 20.7 19.7 20.3 19.9 18.0 ´10 28.0 24.1 25.3 23.6 24.4 23.7 27.0 ´11 26.0 23.5 23.0 22.0 22.5 22.1 24.0 
Mean 17.9 18.2 18.5 18.2 18.5 17.9 18.5 

PCRPR  0.9 0.9 0.9 0.9 0.9 0.9 
RMSE  2.4 2.7 2.8 2.8 2.6 2.9 

Table 18. True grades and grades obtained with peer assessment methods 

6.4.4 Additional Experiments 

It should be noted that, while FOPA is able to fully interpret collected fuzzy 
rankings, the other models need to translate them into ordinal rankings 
before use. In particular, while Borda just interprets the > symbol, MAL, 
MALS, BT and PT can also interpret the ≈ symbol (i.e. they admit ties). 
The symbols ≥ and ≫ within fuzzy rankings are so translated in the symbol 
> before using them with methods different from FOPA. The ≈ symbol is 
also removed with Borda and an artificial random order is introduced 
between the adjacent symbols. 

Given this difference, an additional experiment has been performed to 
investigate the behavior of FOPA when put under the same conditions of the 
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other methods i.e. when using modified fuzzy rankings rather than the 
original ones. In such conditions, FOPA ended up with a 2.7 RMSE (with 
0.9 PCRPR) so 0.3 points are lost with respect to the preceding settings. So, 
we can conclude that the contribution of fuzzy symbols is remarkable but 
not decisive in the estimation of teacher assigned grades.  

Two additional experiments have been performed to evaluate how the 
models under examination perform with a reduced set of ranking strings. As 
said, students have been assigned to two groups, a first group including “more 
proficient” students and a second group made of “less proficient” ones.  

The rows 1-3 of Table 19 show the results obtained by all peer assessment 
models by considering only fuzzy rankings coming from the group of “more 
proficient” students. With a lower amount of data available, all the models 
result in slightly higher error rates, while keeping the adherence to the 
teacher ranking almost unaltered. The consideration that can be drawn is 
that adding evaluations improve the peer grading process even in case of 
dubious reliability of the new evaluations. 

 
Group Measure FOPA MAL MALS BT PL Borda 

1 
Mean 19.1 17.6 18.7 18.9 18.7 17.9 

PCRPR 0.9 0.9 0.9 0.9 0.9 0.8 
RMSE 2.9 3.0 3.0 3.0 2.9 3.6 

2 
Mean 16.2 18.3 17.3 17.6 17.6 17.9 

PCRPR 0.8 0.6 0.7 0.8 0.8 0.6 
RMSE 4.7 7.8 4.8 4.7 4.8 8.7 

Table 19. Performance considering a subset of available fuzzy rankings 

The rows 4-6 of Table 19 show the results obtained by considering only 
fuzzy rankings coming from the group of “less proficient” students. As it can 
be seen, basing on a lower amount of data that, in addition, is of a worst 
quality, all models result in significantly higher error rates. In particular, 
Borda and MAL show the higher increase in RMSE (+5.8 for Borda, +5.1 
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for MAL) while BT shows the lowest one (+1.9). The adherence to the 
teacher's ranking also lowers drastically with values ranging from 60% to 
80%. Nevertheless, also in this case FOPA shows the best performance. 

6.5 FOPA vs. GMPA with Real Data 
Formative assessment is a teaching method where evidence about student 
achievement is elicited, interpreted, and used by teachers, learners, or their 
peers, to make decisions about the next steps in instruction that are likely to 
be better, or better founded, than the decisions they would have taken in the 
absence of the evidence [142]. An important function of formative assessment 
is providing students with continuous feedback, meaning that opportunities 
for feedback should occur continuously, but not intrusively, as a part of 
instruction [143]. 

In this experiment we evaluate the capability of both FOPA and GMPA 
peer assessment models defined in sections 4.5 and 4.6 to support formative 
assessment within a University course on Linear Algebra. In particular, the 
experiment was aimed at answering the following questions: 
1. at what extent peer assessment methods are valuable tools to support 

formative assessment? 
2. at what extent peer assessment methods are also capable of improving 

students’ learning outcomes? 
In the next subsections, we describe the experiment setting, report about 

collected data and analyse such data with the aim of providing an answer to 
the experimental questions here reported. 

6.5.1 Experimental Setting 

The experimental set was composed by first year students taking part in a 
six-monthly intensive module of mathematics within a 3-year B.Sc. degree in 
Computer Engineering at the University of Salerno. In particular, the focus 
was on the second module, which concerned linear algebra topics.  
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The module was made of eight hours per week in face-to-face traditional 
lectures/exercises sessions, supported by an on-line learning system based on 
Moodle8 which provided the students with additional learning resources and 
communication tools. The experiment was held with voluntary students. In 
particular 43 students over about 200 decided to participate. 

The peer assessment exercise was implemented through the workshop 
component of Moodle allowing students to submit and evaluate each other’s 
submissions according to a teacher’s assignment. The workflow implemented 
by the workshop component consisted of the following phases (summarized 
in Figure 27): 
• planning: the teacher decides the grading strategy and the assignment 

allocation method (in case of multiple assignments); 
• setup: the teacher creates the assessment forms and specifies instructions 

and configures settings; 
• submission: the students submit their own work and submissions are 

allocated to assessor students; 
• assessment: the students review each other’s work according to the 

criteria established by the teacher; 
• grading evaluation: student grades are calculated by mediating grades 

obtained by peers according to equation (52); 
• closing: the students can see their final grades, the single grades obtained 

by peers and the related feedback. 

6.5.2 Data Collection 

A set of 43 students participated in the experiment providing a submission 
for the 4 questions making up the assignment. Then, 3 submissions to be 
graded were assigned to each student through a random assessment grid filled 
according to equation (51). The exercise was performed in a blind mode in 
order that students did not know whom they were assessing.  

                                         
8 https://moodle.org/ 
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Figure 27. The workflow implemented by Moodle workshop component 

adopted by this experiment. 
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assessment step. Among them, 24 students completed such task for all the 4 
questions of the 3 assigned submissions while 2 students provided only partial 
marks. This resulted in a total of 304 assigned grades (ranging from 0 to 10) 
with an average of 1.8 grades per question. 
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is settled to the number of available votes for each submission rather than to 
the number of expected ones.  

Conversely, the impact on GMPA methods described in section 4.5 is 
higher. Such methods, in fact, weight the grades provided by each assessor 
by her own grade. So, grades provided by ungraded students have no value 
at all. This impacts recursively on the grades of the assessed students and on 
those of the students assessed by them. To avoid this problem, we have 
assigned dummy grades to ungraded students and used them throughout the 
algorithm iterations. Dummy grades, initially set to the average grade of the 
class, have been removed after all class grades have been calculated. 

To use ordinal methods like Borda (described in section 4.3) and FOPA 
(described in section 4.6) on students’ cardinal input we have defined the 
fuzzy ranking @r for each assessor student ´r ∈ D through equations (36)-
(37) by setting �(´p) = ¿pr for each ´p ∈ Dr (where ¿pr corresponds to the 
grade assigned by ´r to ´p). 

To evaluate the effectiveness of peer grading as formative assessment tool, 
we have also asked the teacher to provide her grades for all the available 
submissions. Teacher grades was collected separately and did not affected the 
peer grading process. 

6.5.3 Performance on Formative Assessment 

To evaluate the effectiveness of peer assessment as a formative assessment 
tool, we have applied the methods described in sections 4.2 and 4.6 to the 
data collected and adapted as explained in section 6.5.2 and have compared 
the obtained final grades to those calculated by Moodle (adopting a standard 
Average rule) as well as to those assigned by the teacher.  

Table 20 compares the results obtained with the standard Average (AVG) 
rule described by equation (52), with the PeerRank rule (PR) described by 
equation (60), with the F-PeerRank the rule described by equations (61)-(62) 
selecting the functions Þ(#) = #2 (PowPeerRank reported as PPR) and with Þ(#) = a+ (ExpPeerRank reported as EPR), with the BestPeer rule (BP) 
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described by equation (63) using PowPeerRank to obtain a first estimation 
of student grades, with the Borda count defined by equation (54) and with 
FOPA as described in section 4.6. Performances have been measured in terms 
of RMSE, through equation (55), between the grades estimated with each 
method and the grades assigned by the teacher.  

 

Question 
RMSE per Method 

AVG PR PPR EPR BP Borda FOPA 

1 3.73 3.65 3.65 3.64 3.73 4.20 3.70 

2 4.54 4.04 4.04 4.00 4.52 3.92 4.14 

3 4.04 3.22 3.22 3.18 4.03 3.27 2.95 

4 4.19 3.80 3.84 3.71 4.00 3.95 3.92 

Mean 4.12 3.68 3.69 3.63 4.07 3.84 3.68 

Table 20. Performance obtained on experimental data 

The first thing that can be noted is that grades coming from students are 
very unreliable if compared with grades assigned by the teacher. This may 
be due to the fact that the data comes from the first experience of the class 
with a peer-grading exercise and it has been performed at the very beginning 
of the course. Moreover, only about the 60% of all students have participated 
in the assessment step resulting in a lack of data for the aggregation step.  

The positive thing is that any of the proposed alternative methods reach 
a lower RMSE with respect to the baseline Average method provided by 
Moodle. In particular the ExpPeerRank rule outperforms the other methods 
on average and in almost all the single questions. It is also notable that FOPA 
reaches similar results by relying only on a subset of the information used by 
ExpPeerRank (just the obtained fuzzy ranking of submissions is used rather 
than the assigned ordinal grades). 
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6.5.4 Performance Injecting Teachers’ Grades 

Given the small participation rate, two additional analyses was performed on 
collected data to evaluate the behaviour of grading methods when the amount 
of available information increases. Given the availability of teacher’s grades 
for all submissions, we have measured how the performance of all the methods 
changes by considering, in addition to grades coming from assessor students, 
an increasingly large subset of grades coming from the teacher. 

Both analyses were made in 43 steps (one for each submission). At each 
step, 4 additional grades coming from the teacher were considered, one for 
each question of a new submission (the priority was given to submissions 
with the fewer amount of available evaluations). 

In the first analysis, the teacher was considered as a common student 
evaluating some of the available submissions. For each question, a new 
column filled of 0 has been so added to both the assessment grid and the 
grades matrix. At each step an element i of this row was turned to 1 in the 
assessment grid and the corresponding element of the grades matrix was set 
as the grade assigned by the teacher to the i-th submission. 

An additional row was also added to both matrices to set dummy grades 
assigned by other students to the teacher (used by PeerRank, PowPeerRank, 
ExpPeerRank and BestPeer methods). In particular, the new row has been 
filled of 1 (apart for the last element, set to 0) in the assessment grid and 
filled of 10 (apart the last element, set to 0) in the grades matrix. The teacher 
is so considered as graded 10 by all other students.  

Figure 28 shows how the RMSE of the proposed methods changes while 
adding new grades from the teacher. As it can be seen, BestPeer and FOPA 
obtain the best performance while ExpPeerRank shows an error which is 
always below than that made by the Average method. The PeerRank rule is 
better than the Average one until 17 added grades, then it results to be a bit 
worse. Borda is quite better than Average until 11 added grades, then it 
becomes quite worse.  



180 Fuzzy Models for Group Decision Making and their Applications 
 

 
Figure 28. Performance considering increasingly large subsets of grades 

coming from the teacher (case 1). 

Although BestPeer and FOPA seem to show a similar behaviour, it 
should be noted that the performance of BestPeer is boosted by the dummy 
grade of 10 assigned to the teacher. Given that it returns the grade assigned 
by the best grader, in almost all cases, when available, it returns the grade 
assigned by the teacher. Instead FOPA makes no assumption on the grades 
obtained by graders so it can be considered as the most reliable rule among 
those experimented. 

It should be also noted that the results of Borda are quite penalised by 
the fact that, to uniform scores, they have been normalized by the total 
number of assessment made by each assessor. So, while the number of 
teacher’s grades increases, their weight with respect to the other decreases. 

The second analysis is similar to the first one, except that the teacher is 
considered as a “super” student, whose grades, if available, are preferred over 
the grades provided by common students. In fact, while the first analysis is 
aimed at determining how the described methods behave with additional 

Number of added teacher's grades
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

RM
SE

0

0.5

1

1.5

2

2.5

3

3.5

4

Average
PeerRank
PowPeerRank
ExpPeerRank
BestPeer
Borda
FOPA



Experiments and Evaluation 181 

available grades, the second one is aimed at determining if they can reach 
even better performances by asking to the teacher to fill the gaps in the data. 

Figure 29 shows how the RMSE of the proposed methods changes while 
adding new grades from the teacher. Also in this case BestPeer and FOPA 
show the best performances: FOPA is better until 33 added grades, then 
BestPeer wins. In this case, the differences among methods remains almost 
constant while in the previous case they increase with the number of available 
grades. Also in this case, the results of Borda are penalised for the same 
reasons explained above. 

 
Figure 29. Performance considering increasingly large subsets of grades 

coming from the teacher (case 2). 

Based on experimental data we can affirm that it is possible to improve 
the results of peer grading through the application of alternative methods 
with respect to the standard Average rule. In particular, FOPA is the method 
that is able to provide the best results with less information (a ranking is 
needed rather than ordinal grades). Moreover, the results of FOPA improve 
more than the others with increasing amount of information available.  
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When only few unreliable evaluations are available (as in the analysed 
case) the use of peer grading as a formative assessment tool is questionable. 
The results obtained, even when corrective algorithms are used, are quite far 
from grades assigned by the teacher. Nevertheless, as seen, such results can 
be improved by asking the teacher to fill the gaps in the data. 

6.5.5 Qualitative Evaluation 

To evaluate the effectiveness of peer assessment as a tool for improving the 
learning outcomes, we have had an open interview with the tutor that has 
oversaw the online activities of the students. She sees peer assessment as a 
good strategy for filling knowledge gaps through a different perspective and 
suggests its application also on the subsequent topics of the course. Formative 
assessment is in fact a process observable over a long period of time and the 
proposed methodology is capable of catching information over time.  

The involved tutor also thinks that the method enables to review learnt 
topics in a collaborative way. In fact, peer grading sees an involvements of 
students both as assessors of their own learning and as resources to other 
students. One of the key components of engaging students in the assessment 
of their own learning is providing them with descriptive feedback as they 
learn. Descriptive feedback provides students with an understanding of what 
they are doing well, links to classroom learning, and gives specific input on 
how to reach the next step in the learning progression.  

Apart from formative assessment, peer assessment has resulted capable 
of developing students’ argumentation skills where argumentation is defined 
as the intentional explication of the reasoning used during the development 
of a given task [144]. In fact, it encourages students to clarify, review and 
edit their ideas, through the focus of peer feedback. At the same time, it 
requires students to provide either feedback and grades to their peers based 
on the criteria of excellence they perceive.



Final Remarks 

 
In this Ph.D. thesis, several fuzzy models for GDM, aimed at improving both 
preferences expression and aggregation, have been defined and validated in 
two applicative contexts: e-Learning and Recommender Systems. First of all, 
a preference model named Fuzzy Ranking, combining the user-friendliness of 
ordinal ranking with the expressive capability of FPR, has been defined. Like 
FPRs, fuzzy rankings allow decision makers to focus on two alternatives at 
a time. Differently from FPRs it is not needed to assess preference degrees 
for any pair of alternatives (resulting in c2 comparisons with n alternatives) 
but just for adjacent alternatives in the defined ranking (resulting in c − 1 
comparisons). 

Fuzzy rankings offer a compact notation that does not oblige experts to 
be unnecessarily precise in preference definition. In this way it is very unlikely 
to introduce inconsistencies in the GDM process while allowing to reason by 
approximation. The impossibility to evaluate alternatives is supported with 
partial fuzzy rankings while multiple fuzzy rankings support incomparability 
between alternatives. To let use standard GDM methods and tools when 
preferences are expressed with fuzzy rankings, translation methods to and 
from FPRs have been provided as well as similarity measures to assess the 
convergence of experts’ opinions. 

A possible extension of fuzzy rankings, to be studied in future works, is 
the adoption of linguistic labels (mapped on fuzzy numbers) to specify the 
gap between two subsequent elements in the ranking. This would make the 
model more complex but, at the same time, enable a better representation of 
the vagueness inherent in the subjective evaluation of alternatives made by 
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experts. Specific GDM approaches based on linguistic assessment, like in 
[145], could be adapted to deal with this case. 

Once defined, the fuzzy ranking model has been used as a building block 
for a complete GDM model able to consider social influence between experts 
and to estimate how experts’ opinions change according to its effects. If fact, 
despite its prominent role in opinion formation, social influence seems to be 
almost disregarded by current GDM models. Aiming at filling this gap, the 
proposed model links the concept of social influence to that of interpersonal 
trust according to the intuition that the more an expert trusts in another, 
the more her opinion is influenced by the trusted expert, especially when she 
is unable to express an opinion on some alternatives. 

Fuzzy rankings are used to represent experts’ opinions regarding the set 
of alternatives as well as their trust on other experts. Defined rankings are 
then used to determine the structure and the level of experts’ interpersonal 
influence used, in turn, to estimate missing preferences and to let them evolve 
simulating the effects of experts’ interaction. The defined model leads to a 
more accurate representation of the GDM process by formalizing important 
aspects that are usually disregarded by other models. A future extension of 
such model could be directed toward multi-criteria (or multi-attribute) GDM 
that deals with problems where the alternatives are characterized in terms of 
multiple, usually conflicting, attributes. In such cases, the experts should first 
of all reach an agreement on the priority of each attribute and, then, on the 
priority of each alternative with respect to each attribute. 

As said, defined models have been specialized in two applicative contexts. 
With respect to the e-Learning context, a model for ordinal peer assessment, 
named FOPA, has been defined. With FOPA each student is asked to define 
a fuzzy ranking among some submissions of other students for a given 
assignment. Students’ provided rankings are transformed in FPRs, expanded 
to estimate missing values and aggregated. The aggregated relation is then 
used to generate a global ranking between the submissions and to estimate 
their absolute grades. FOPA has been compared with existing ordinal and 
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cardinal peer assessment models and has shown better performances in 
several in silico experiments both in the reconstruction of the student ranking 
and in the estimation of students’ grades. Additional experiments with real 
University students have confirmed the former results. 

Despite that it has been conceived for peer assessment, FOPA can be 
easily adapted in other contexts where several alternatives must be evaluated 
taking into account the opinion of many assessors but when each assessor has 
only a partial view of the whole picture. For example, in a Conference Review 
Process many submissions must be ranked (to choose the best ones to invite 
for presentation and/or to be awarded) basing on a set of (possibly unreliable) 
experts, each reviewing a relatively small number of works. Another example 
is the Employee Reward and Recognition Systems set up by companies to 
motivate their employees. Here employee performances are ranked according 
to suggestions coming from managers, each of them evaluating just the subset 
of employees involved in the projects she manages. 

To validate FOPA and pave the way for future extensions, we have also 
defined additional peer-assessment models based on graph mining techniques. 
The assumption of these models, confirmed by some existing studies, is that 
the grade obtained by a student on a given subject is correlated to her ability 
as assessor on the same subject. Experimental results with synthetic and real 
data show that such methods outperforms other existing methods in most 
configurations even if they show worse results than FOPA. Nevertheless, a 
possible extension of FOPA is to integrate the same techniques to detect the 
assessors’ reliability and use this information to weight the feedback provided 
in the aggregation step. To this purpose, preference aggregators that takes 
experts’ importance into account (like I-IOWA) should be preferred to OWA. 
In addition, to support assessment rubrics, it would be possible to extend the 
underlying model to multi-criteria GDM. 

Finally, with respect to applicative context of Recommender Systems, the 
group recommendation problem has been tackled. While in GDM, a group of 
decision makers evaluate a set of alternatives with the aim of selecting the 
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best one to adopt, in GRS the system selects, from a given catalogue, the set 
of items that best fit the preferences of all (or the majority of) members 
belonging to a group of users. While the majority of existing GRS approaches 
just use individual users’ preferences to estimate those of the whole group, 
the proposed approach, based on the defined GDM models, also considers the 
personality of group members, their interpersonal trust and social influence. 
Taking such factor into account allows to define a more accurate model that 
is capable of reaching good recommending performances.  

The proposed model is able to build a social influence network starting 
from information about interpersonal trust and users’ personality traits. The 
network is used, in turn, to evolve users’ preferences toward a shared solution. 
An evolution of the proposed approach is to directly obtain information about 
interpersonal trust by analyzing implicit data contained in social networks 
according to the models defined in [118, 119]. In addition, personality traits 
can be predicted by analyzing the language used in social media according to 
models defined in [124, 125, 146]. This will make the process transparent to 
users without the need to fill long questionnaires before system use.  

It is worth noting that some of the preliminary results obtained by the 
candidate during the three-years PhD program (subsequently extended and 
systematized in this thesis), have been already submitted and accepted for 
publication and presentation on international conferences and journals. In 
particular, a first version of the fuzzy GDM model guided by social influence 
described in chapter 3 has been published in [147], with an embryonic version 
of the fuzzy ranking model defined in chapter 2. A preliminary version of the 
FOPA model described in chapter 4 has been published in [148] while the 
peer assessment methods based on graph mining (described in section 4.5) 
have been also published in [149, 150]. Some of the experiments reported in 
chapter 6 have been published in [151, 152] while additional works on fuzzy 
rankings and GDM-based group recommendations are in preparation. 
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